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DISTRIBUTED ORDER ESTIMATION OF ARX MODEL UNDER
COOPERATIVE EXCITATION CONDITION\ast 

DIE GAN\dagger AND ZHIXIN LIU\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this paper, we consider the distributed estimation problem of a linear stochastic
system described by an autoregressive model with exogenous inputs when both the system orders
and parameters are unknown. We design distributed algorithms to estimate the unknown orders and
parameters by combining the proposed local information criterion with the distributed least squares
method. The simultaneous estimation for both the system orders and parameters brings challenges
for the theoretical analysis. Some analysis techniques, such as double array martingale limit the-
ory, stochastic Lyapunov functions, and martingale convergence theorems are employed. For the
case where the upper bounds of the true orders are available, we introduce a cooperative excitation
condition, under which the strong consistency of the estimation for the orders and parameters is
established. Moreover, for the case where the upper bounds of true orders are unknown, a similar
distributed algorithm is proposed to estimate both the orders and parameters, and the correspond-
ing convergence analysis for the proposed algorithm is provided. We remark that our results are
obtained without relying on the independency or stationarity assumptions of regression vectors, and
the cooperative excitation conditions can show that all sensors can cooperate to fulfill the estimation
task even though any individual sensor cannot.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . distributed order estimation, cooperative excitation condition, distributed least
squares, convergence
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\bfD \bfO \bfI . 10.1137/21M1421362

1. Introduction. Statistical models are widely used in almost every field of
engineering and science, and how to choose or identify an appropriate statistical model
to fit observations is an important issue. The order estimation of statistical models is
one of the key steps to construct the models. The investigation of the order estimation
has many applications in engineering systems, such as radar [1], power systems [2],
real seismic traces [3], and physiological systems [4].

In order to estimate the order of statistical models, some criterions are proposed
including Akaike information criterion [5], BIC (Bayesian information criterion) [6],
CIC [7] ( the first ``C"" emphasizes that the criterion is designed for feedback control
systems), and their variants [8]. Based on these information criteria, considerable
progress has been made on the order estimation in time series analysis and adaptive
estimation and control (e.g., [9], [10], [11], [12], [13]). Some theoretical results are also
obtained for the order estimation problem. For example, Hannan and Kavalieris in
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1520 DIE GAN AND ZHIXIN LIU

[14] introduced an algorithm to estimate the model orders and system parameters, and
the convergence of the algorithm was obtained with a stationary input sequence. Chen
and Guo in [8] introduced a modification of the BIC criterion to estimate the order
of the multidimensional autoregressive model with exogenous inputs (ARX) system,
where the true orders are assumed to belong to a known finite set. Furthermore,
the relevant results for the estimation of the system orders were generalized in [15]
to the case where the upper bounds of the true orders are unknown. After that,
some development for the order estimation problem are provided (e.g., [16], [17], [18],
[19]). Recently, the genetic algorithm [20] and neural networks [21] were developed for
model order estimation problem with good performance. However, the effectiveness
of the proposed algorithms in [20] and [21] was verified by some simulation examples
without rigorous theoretical analysis.

Over the past decade, with the development of communication technology and
computer science, wireless sensor networks have attracted increasing attention from
researchers due primarily to their practical applications in engineering systems, such
as intelligent transportation and machine health monitoring [22]. We know that in a
sensor network, each sensor can only measure partial information of the system due
to its limited sensing capacity. In order to estimate the unknown states and system
parameters by using data from sensor networks, centralized and distributed methods
are two common schemes, where the latter is gaining increasing popularity because
of scalability, privacy, and robustness against node and link failures. In distributed
algorithms, each sensor only needs to communicate with its neighboring sensors in
a certain domain. Some strategies including incremental strategies [23], consensus
strategies [24], diffusion strategies [25], and combinations of them [26] are proposed
to construct the distributed algorithms. Based on these strategies, the performance
analysis of the distributed estimation algorithms are investigated, for example, the
consensus-based least mean squares (LMS) (e.g., [27], [28]), the diffusion stochastic
gradient descent algorithm [29], the diffusion Kalman filter (e.g., [30], [31]), the diffu-
sion least squares (LS) (e.g., [32], [33], [34]), the diffusion forgetting factor recursive
[35]. Most of the corresponding theoretical results are established by requiring the
independency, stationarity, or Gaussian assumptions for the regression vectors due to
the mathematical difficulty in analyzing the product of random matrices. However,
these requirements are hard to satisfy since the regression signals may be correlated
due to the multi path effect or feedback. In order to avoid using the independency and
stationarity conditions of the regressors, some attempts are made for some distrib-
uted estimation algorithms. For the time-invariant unknown parameter, Xie, Zhang,
and Guo studied the diffusion LS algorithm and established the convergence result
in [36]. For time-varying unknown parameters, they investigated the consensus-based
and diffusion LMS algorithm, and proposed the corresponding cooperative informa-
tion condition to guarantee the stability of the algorithm (e.g., [24], [37] ). For the
diffusion Kalman filter algorithm, we introduced the collective random observability
condition and provided the stability analysis of the distributed Kalman filter algo-
rithm in [31]. We see that the analysis of all these results is established with known
system orders. How to construct and analyze the distributed algorithms when the
system orders are unknown brings challenges for us.

In this paper, we investigate the distributed estimation problem of linear stochas-
tic systems described by an ARX model with unknown system orders and parameters.
The estimates for the orders of each sensor are obtained by minimizing the proposed
local information criterion (LIC), and the estimates for unknown system parameters
are derived by the distributed LS method where the system orders are replaced by the
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DISTRIBUTED ORDER ESTIMATION OF ARX MODEL 1521

estimates of orders. The challenges in the theoretical analysis focus on the cumulative
effect caused by the system noises and the coupled relationship between the estimates
of system orders and parameters. We introduce some mathematical tools including
the double array martingale limit theory, martingale convergence theorems, and the
stochastic Lyapunov functions to study the convergence of the proposed distributed
algorithms. The main contributions of this paper are summarized as follows.

\bullet For the case where the true orders have known upper bounds, we design
a distributed algorithm to simultaneously estimate both the system orders
and parameters by minimizing the proposed LIC and using the distributed
LS method. A cooperative excitation condition is introduced to reflect the
joint effect of multiple sensors: the estimation task can still be completed by
the cooperation of the sensor networks even if any individual sensor cannot.
Under the cooperative excitation condition, the strong consistency of the
estimates for both system orders and parameters is established.

\bullet For the case where the upper bounds of true orders are unknown, a sim-
ilar distributed algorithm is proposed where the growth rate for the upper
bounds of the system orders is characterized by a nondecreasing positive func-
tion. We employ the double array martingale limit theory to deal with the
difficulty arising in analyzing the cumulative effect of the system noises. The
convergence analysis for system orders and parameters can also be provided.

\bullet The theoretical results obtained in this paper do not require the assumptions
of the independency and stationarity of the regression signals as used in al-
most all theoretical analysis of the distributed algorithms, which makes it
possible to have applications to the stochastic feedback systems.

The rest of this paper is organized as follows. We introduce some preliminaries
including graph theory and the observation model in section 2. In section 3, we estab-
lish the convergence results when the upper bounds of the true orders are available.
The case where the upper bounds of the true orders are unknown is investigated in
section 4. A simulation example is given in section 5 to illustrate our theoretical
results. We present the conclusion of the paper in section 6.

2. Problem formulation.

2.1. Some preliminaries. In this paper, we use \bfitA \in \BbbR m\times n to denote an m\times n-
dimensional real matrix. For a matrix \bfitA , we use \lambda max(\cdot ) and \lambda min(\cdot ) to denote the
largest and smallest eigenvalues of the matrix. \| \bfitA \| denotes the Euclidean norm, i.e.,

\| \bfitA \| = (\lambda max(\bfitA \bfitA T ))
1
2 , where the notation T denotes the transpose operator. We use

det(\cdot ) to denote the determinant of the corresponding matrix. For a symmetric matrix
\bfitA , if all eigenvalues of \bfitA are positive (or nonnegative), then it is a positive definite
(semipositive) matrix. Suppose that \bfitA \in \BbbR n\times nand \bfitB \in \BbbR m\times m are two symmetric
matrices, and \bfitC is an n \times m-dimensional matrix. Then by the Rayleigh quotient of
the symmetric matrix, we can easily obtain the following inequality:

\lambda min

\biggl( 
\bfitA \bfitC 
\bfitC T \bfitB 

\biggr) 
\leq \lambda min(\bfitA ).(2.1)

The matrix inversion formula is used in our analysis, and we list it here.

Lemma 2.1 ([38]). For any matrices \bfitA , \bfitB , \bfitC , and \bfitD with suitable dimensions,
the following formula,

(\bfitA +\bfitB \bfitD \bfitC ) - 1 = \bfitA  - 1  - \bfitA  - 1\bfitB (\bfitD  - 1 +\bfitC \bfitA  - 1\bfitB ) - 1\bfitC \bfitA  - 1,

holds, provided that the relevant matrices are invertible.
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1522 DIE GAN AND ZHIXIN LIU

If all elements of a matrix \bfitA = \{ aij\} \in \BbbR n\times n are nonnegative, then it is a
nonnegative matrix, and furthermore if

\sum n
j=1 aij = 1 holds for all i \in \{ 1, \cdot \cdot \cdot , n\} ,

then it is called a stochastic matrix.
Let \{ \bfitA k\} be a matrix sequence and \{ bk\} be a positive scalar sequence. Then by

\bfitA k = O(bk) we mean that there exists a constant C > 0 such that \| \bfitA k\| \leq Cbk \forall k \geq 0,
and by \bfitA k = o(bk) we mean that limk\rightarrow \infty \| \bfitA k\| /bk = 0.

In this paper, our purpose is to design distributed algorithms to estimate both
system orders and parameters in a distributed way and establish the corresponding
convergence results. We use an undirected graph \scrG = (\scrV , \scrE ) to describe the rela-
tionship between sensors, where \scrV is the set of sensors and \scrE is the edge set. The
adjacency matrix \scrA = \{ aij\} \in \BbbR n\times n is introduced to reflect the weight of the corre-
sponding edge. The elements of \scrA satisfy aij > 0 if (i, j) \in \scrE and aij = 0 otherwise.
The set of neighbors of the sensor i is denoted as Ni = \{ j \in \scrV | (i, j) \in \scrE \} , and we
assume that sensor i belongs to Ni. A path of length \ell is a sequence of \ell + 1 sensors
such that the subsequent senors are connected. The graph \scrG is called connected if
for any two sensors i and j, there is a path connecting them. The diameter D\scrG of
the graph \scrG is defined as the maximum shortest length of the path between any two
sensors. For simplicity of analysis, the convergence of the estimates in this paper is
considered under the condition that the weighted adjacency matrix \scrA is symmetric
and stochastic. Thus, it is obvious that \scrA is doubly stochastic.

2.2. Observation model. We consider a network composed of n sensors. At
each time instant t (t = 0, 1, 2, . . .), the input signal ut,i \in \BbbR and the output signal
yt,i \in \BbbR of sensor i \in \{ 1, ..., n\} are assumed to obey the following linear stochastic
ARX model,

yt+1,i = b1yt,i + \cdot \cdot \cdot + bp0yt+1 - p0,i + c1ut,i + \cdot \cdot \cdot + cq0ut+1 - q0,i + wt+1,i,(2.2)

yt,i = 0, ut,i = 0, for t \leq 0,

where \{ wt,i\} is a noise process, p0, q0 are unknown true orders (bp0
\not = 0, cq0 \not = 0), and

b1, . . . , bp0
, c1, . . . , cq0 are unknown parameters.

Denote the unknown parameter vector \bfittheta (p, q) and the corresponding regression
vector \bfitvarphi t,i(p, q) as

\bfittheta (p, q) = [b1, . . . , bp, c1, . . . , cq]
T ,(2.3)

\bfitvarphi t,i(p, q) = [yt,i, . . . , yt+1 - p,i, ut,i, . . . , ut+1 - q,i]
T .(2.4)

If p > p0, then bj = 0 for p0 < j \leq p, and if q > q0, then cm = 0 for q0 < m \leq q. The
regression model (2.2) can be rewritten as

yt+1,i = \bfittheta T (p, q)\bfitvarphi t,i(p, q) + wt+1,i (for p \geq p0 and q \geq q0)(2.5)

= \bfittheta T (p0, q0)\bfitvarphi t,i(p0, q0) + wt+1,i.(2.6)

The purpose of this paper is to design the distributed algorithm for each sensor
by using the local information from its neighbors to estimate both the system orders
p0, q0 and the parameter vector \bfittheta (p0, q0) . We know that for the case where the
system orders p0, q0 are known, the distributed LS algorithm is one of the most basic
algorithms to estimate the unknown parameters, and it has wide applications because
of its fast convergence rate, e.g., in the area of cloud technologies (e.g., [39]). The
details of the distributed LS algorithm can be found in the following Algorithm 2.1
(see [36]).
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DISTRIBUTED ORDER ESTIMATION OF ARX MODEL 1523

Algorithm 2.1 Distributed LS algorithm.

For any given i \in \{ 1, . . . , n\} and given system order (p, q), begin with an initial
estimate \bfittheta 0,i(p, q), and an initial positive definite matrix \bfitP 0,i(p, q). The distributed
LS algorithm is recursively defined at time instant t \geq 0 as follows.
1: Adaptation.

\=\bfittheta t+1,i(p, q) = \bfittheta t,i(p, q) + dt,i(p, q)\bfitP t,i(p, q)\bfitvarphi t,i(p, q)

\cdot (yt+1,i  - \bfitvarphi T
t,i(p, q)\bfittheta t,i(p, q)),(2.7)

\=\bfitP t+1,i(p, q) = \bfitP t,i(p, q) - dt,i(p, q)\bfitP t,i(p, q)\bfitvarphi t,i(p, q)\bfitvarphi 
T
t,i(p, q)\bfitP t,i(p, q),(2.8)

dt,i(p, q) = [1 +\bfitvarphi T
t,i(p, q)\bfitP t,i(p, q)\bfitvarphi t,i(p, q)]

 - 1.(2.9)

2: Diffusion.

\bfitP  - 1
t+1,i(p, q)=

\sum 
j\in Ni

aij \=\bfitP 
 - 1
t+1,j(p, q),(2.10)

\bfittheta t+1,i(p, q)= \bfitP t+1,i(p, q)
\sum 
j\in Ni

aij \=\bfitP 
 - 1
t+1,j(p, q)

\=\bfittheta t+1,j(p, q).(2.11)

In this section, for given (p, q), the estimation error between the true parameter

and the estimate obtained by Algorithm 2.1 is denoted as \widetilde \bfittheta t,i(p, q),
\widetilde \bfittheta t,i(p, q) = [b1  - bi1,t, . . . , bp  - bip,t, c1  - ci1,t, . . . , cq  - ciq,t]

T ,(2.12)

where \{ bij,t\} 
p
j=1 and \{ cir,t\} 

q
r=1 are denoted as the estimates of the corresponding com-

ponents of \bfittheta t,i(p, q) obtained by Algorithm 2.1.

We have the following result on the estimation error \widetilde \bfittheta t,i(p, q), which will be helpful
for the subsequent theoretical analysis.

Lemma 2.2. For p \geq p0 and q \geq q0, the following equation holds:

\bfitP  - 1
t+1,i(p, q)

\widetilde \bfittheta t+1,i(p, q) =
\sum 
j\in Ni

aij\bfitP 
 - 1
t,j (p, q)

\widetilde \bfittheta t,j(p, q) - \sum 
j\in Ni

aij\bfitvarphi t,j(p, q)wt+1,j .(2.13)

Proof. For simplicity of expression, we use dt,i, \bfitvarphi t,i, \bfitP t,i, \=\bfitP t+1,i, \=\bfittheta t+1,i, \widetilde \bfittheta t,i, and
\bfittheta t+1,i to denote dt,i(p, q), \bfitvarphi t,i(p, q), \bfitP t,i(p, q), \=\bfitP t+1,i(p, q), \=\bfittheta t+1,i(p, q), \widetilde \bfittheta t,i(p, q), and
\bfittheta t+1,i(p, q). By (2.9), we have

dt,i = 1 - dt,i\bfitvarphi 
T
t,i\bfitP t,i\bfitvarphi t,i.(2.14)

Combining this with (2.7) and (2.8), we have

\=\bfittheta t+1,i = (\bfitI  - dt,i\bfitP t,i\bfitvarphi t,i\bfitvarphi 
T
t,i)\bfittheta t,i + dt,i\bfitP t,i\bfitvarphi t,iyt+1,i

(2.15)

= (\bfitI  - dt,i\bfitP t,i\bfitvarphi t,i\bfitvarphi 
T
t,i)\bfittheta t,i + \bfitP t,i\bfitvarphi t,i(1 - dt,i\bfitvarphi 

T
t,i\bfitP t,i\bfitvarphi t,i)yt+1,i

= (\bfitP t,i  - dt,i\bfitP t,i\bfitvarphi t,i\bfitvarphi 
T
t,i\bfitP t,i)\bfitP 

 - 1
t,i \bfittheta t,i + (\bfitP t,i  - dt,i\bfitP t,i\bfitvarphi t,i\bfitvarphi 

T
t,i\bfitP t,i)\bfitvarphi t,iyt+1,i

= \=\bfitP t+1,i\bfitP 
 - 1
t,i \bfittheta t,i +

\=\bfitP t+1,i\bfitvarphi t,iyt+1,i.

D
ow

nl
oa

de
d 

06
/0

2/
22

 to
 1

24
.1

6.
14

8.
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1524 DIE GAN AND ZHIXIN LIU

Hence we have

\=\bfitP  - 1
t+1,i

\=\bfittheta t+1,i = \bfitP  - 1
t,i \bfittheta t,i +\bfitvarphi t,iyt+1,i.

Substituting this equation into (2.11) yields

\bfitP  - 1
t+1,i\bfittheta t+1,i =

\sum 
j\in Ni

aij(\bfitP 
 - 1
t,j \bfittheta t,j +\bfitvarphi t,jyt+1,j).(2.16)

By (2.8) and Lemma 2.1, we have

\=\bfitP  - 1
t+1,i = \bfitP  - 1

t,i +\bfitvarphi t,i\bfitvarphi 
T
t,i.(2.17)

Hence by (2.10), (2.16), and (2.17), we have

\bfitP  - 1
t+1,i

\widetilde \bfittheta t+1,i = \bfitP  - 1
t+1,i\bfittheta  - \bfitP  - 1

t+1,i\bfittheta t+1,i

=
\sum 
j\in Ni

aij \=\bfitP 
 - 1
t+1,j\bfittheta  - 

\sum 
j\in Ni

aij(\bfitP 
 - 1
t,j \bfittheta t,j +\bfitvarphi t,jyt+1,j)

=
\sum 
j\in Ni

aij(\bfitP 
 - 1
t,j +\bfitvarphi t,j\bfitvarphi 

T
t,j)\bfittheta  - 

\sum 
j\in Ni

aij(\bfitP 
 - 1
t,j \bfittheta t,j +\bfitvarphi t,j\bfitvarphi 

T
t,j\bfittheta +\bfitvarphi t,jwt+1,j)

=
\sum 
j\in Ni

aij\bfitP 
 - 1
t,j
\widetilde \bfittheta t,j  - \sum 

j\in Ni

aij\bfitvarphi t,jwt+1,j ,

which completes the proof of the lemma.

For the case where the system orders p0, q0 are known, Xie, Zhang, and Guo in
[36] proved that the distributed LS algorithm can converge to the true parameters
almost surely (a.s.) under a cooperative excitation condition. However, when the
system orders p0, q0 are unknown, the estimation for both the system orders and
the parameters makes the design and analysis of the distributed algorithms quite
complicated. We will deal with such a problem in the following two sections.

3. Case I: The upper bounds of true orders are known. In this section, we
will first design the distributed algorithm to estimate both the system orders (p0, q0)
and the parameter vector \bfittheta (p0, q0) for the case where the system orders have known
upper bounds, i.e.,

(p0, q0) \in M \triangleq \{ (p, q), 0 \leq p \leq p\ast , 0 \leq q \leq q\ast \} ,

where p\ast and q\ast are known upper bounds of the system orders.
For convenience of analysis, we introduce some notations and assumptions,

\bfitd t(p, q) = diag\{ dt,1(p, q), ..., dt,n(p, q)\} ,
\Phi t(p, q) = diag\{ \bfitvarphi t,1(p, q), ...,\bfitvarphi t,n(p, q)\} ,
\bfitW t = [wt,1, ...wt,n]

T ,

\bfitP t(p, q) = diag\{ \bfitP t,1(p, q), ...,\bfitP t,n(p, q)\} ,
\=\bfitP t(p, q) = diag\{ \=\bfitP t,1(p, q), ..., \=\bfitP t,n(p, q)\} ,\widetilde \Theta t(p, q) = col\{ \widetilde \bfittheta t,1(p, q), ..., \widetilde \bfittheta t,n(p, q)\} ,

where col(\cdot , \cdot \cdot \cdot , \cdot ) denotes a vector stacked by the specified vectors, and diag(\cdot , \cdot \cdot \cdot , \cdot )
denotes a block matrix formed in a diagonal manner of the corresponding vectors or
matrices.
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DISTRIBUTED ORDER ESTIMATION OF ARX MODEL 1525

In order to propose and further analyze the distributed algorithm used to estimate
both the system order and the parameters, we introduce some assumptions on the
network topology, and the observation noise and the regression vectors.

Assumption 3.1. The communication graph \scrG is connected.

Remark 3.1. For l > 1, we denote\scrA l \triangleq [a
(l)
ij ] with\scrA being the weighted adjacency

matrix of the graph \scrG , i.e., a
(l)
ij is the (i, j)th element of the matrix \scrA l. Under

Assumption 3.1, we can easily obtain that \scrA l is a positive matrix for l \geq D\scrG by the

theory of the product of stochastic matrices, which means that a
(l)
ij > 0 for any i and

j.

Assumption 3.2. For any i \in \{ 1, . . . , n\} , the noise sequence \{ wt,i,Ft\} is a martin-
gale difference sequence, where Ft is a sequence of nondecreasing \sigma -algebras generated
by \{ yk,i, uk,i, k \leq t, i = 1, 2, , . . . , n\} , and there exists a constant \beta > 2 such that

sup
t\geq 0

E[| wt+1,i| \beta | Ft] < \infty a.s.,

where E[\cdot | \cdot ] denotes the conditional expectation operator.

Assumption 3.3. (cooperative excitation condition I).There exists a sequence \{ at\} 
of positive real numbers satisfying at  -  -  - \rightarrow 

t\rightarrow \infty 
\infty and

log rt(p
\ast , q\ast )

at
 -  -  - \rightarrow 
t\rightarrow \infty 

0,
at

\lambda p,q
min(t)

 -  -  - \rightarrow 
t\rightarrow \infty 

0 for (p, q) \in M\ast a.s.,(3.1)

where M\ast = \{ (p0, q\ast ), (p\ast , q0)\} , rt(p, q) = \lambda max\{ \bfitP  - 1
0 (p, q)\} +\sum n

i=1

\sum t
k=0 \| \bfitvarphi k,i(p, q)\| 2, and

\lambda p,q
min(t) = \lambda min

\left\{   
n\sum 

j=1

\bfitP  - 1
0,j (p, q) +

n\sum 
j=1

t - D\scrG +1\sum 
k=0

\bfitvarphi k,j(p, q)\bfitvarphi 
T
k,j(p, q)

\right\}   .

Remark 3.2. We give an explanation for the choice of \{ at\} in Assumption 3.3
for two typical cases: (I) If the regression vectors \bfitvarphi k,i(p

\ast , q\ast ) are bounded for any
i \in \{ 1, ..., n\} , and satisfy the ergodicity property, i.e., there exists a matrix \bfitH i such
that 1

t

\sum t
k=1 \bfitvarphi k,i(p

\ast , q\ast )\bfitvarphi T
k,i(p

\ast , q\ast )  -  -  - \rightarrow 
t\rightarrow \infty 

\bfitH i with
\sum n

i=1 \bfitH i being positive definite

(see, e.g., [40]), then at can be taken as at = t\rho , 0 < \rho < 1. (II) If there exist three
positive constants s1, s2, and s3 (they may depend on the sample \omega ) such that

n\sum 
i=1

t\sum 
k=0

(\| yk,i\| 2 + \| uk,i\| 2) = O(ts1) a.s.,

\lambda p,q
min(t) \geq s2(log t)

1+s3 for (p, q) \in M\ast a.s.,

then Assumption 3.3 can be also satisfied by taking at = (log t) log log t.

Remark 3.3. For the case where there is only one sensor (n = 1), Guo, Chen,
and Zhang in [7] investigated the strong consistency of the order estimate under the
following conditions,

log(
\sum t

k=0 \| \bfitvarphi k,1(p
\ast , q\ast )\| 2 + 1)

at
 -  -  - \rightarrow 
t\rightarrow \infty 

0 a.s.,

at

\lambda min(
\sum t

k=0 \bfitvarphi k,1(p, q)\bfitvarphi T
k,1(p, q) + \gamma \bfitI )

 -  -  - \rightarrow 
t\rightarrow \infty 

0 for (p, q) \in M\ast a.s.,
(3.2)
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where \gamma is a positive constant, and \{ at, t \geq 1\} is a sequence of positive numbers.
Assumption 3.3 can be considered as an extension of (3.2) to the case of multiple
sensors.

Remark 3.4. Cooperative excitation condition I (i.e., Assumption 3.3) can reflect
the joint effect of multiple sensors to some extent: all sensors may cooperatively
estimate the unknown orders and parameters under Assumption 3.3 (see Theorems
3.4 and 3.5), even though any individual sensor cannot fulfill the estimation task since
the single sensor may lack adequate excitation to satisfy the condition (3.2). We give
a simulation example to illustrate this point in section 5

In the following, we propose an algorithm to estimate the system orders p0 and
q0 in a distributed way. For this propose, we introduce an LIC Lt,i(p, q) for the sensor
i at the time instant t \geq 0,

Lt,i(p, q) = \sigma t,i(p, q,\bfittheta t,i(p, q)) + (p+ q)at,(3.3)

where \sigma 0,i(p, q,\bfitbeta (p, q)) = 0, and \sigma t,i(p, q,\bfitbeta (p, q)) is recursively defined for t > 0 as
follows:

\sigma t,i(p, q,\bfitbeta (p, q)) =
\sum 
j\in Ni

aij
\bigl( 
\sigma t - 1,j(p, q,\bfitbeta (p, q)) + [yt,j  - \bfitbeta T (p, q)\bfitvarphi t - 1,j(p, q)]

2
\bigr) 
.(3.4)

With \sigma 0,i(p, q,\bfitbeta (p, q)) = 0, (3.4) is equivalent to the following equation:

\sigma t,i(p, q,\bfitbeta (p, q)) =

n\sum 
j=1

t - 1\sum 
k=0

a
(t - k)
ij [yk+1,j  - \bfitbeta T (p, q)\bfitvarphi k,j(p, q)]

2.(3.5)

When the upper bounds of orders are known, the distributed algorithm to estimate
the system orders and parameters is put forward by minimizing LIC (i.e., Lt,i(p, q))
and using Algorithm 2.1. It is clear that in (3.3), the first term is used to minimize
the error between the observation signals and the prediction, while the penalty term
``(p + q)at"" is introduced to avoid overfitting. The details of the algorithm can be
found in Algorithm 3.1.

Algorithm 3.1.

For any given i \in \{ 1, . . . , n\} , the distributed estimation of the system orders and
parameters can be obtained at the time instant t \geq 1 as follows.
Step 1: For any (p, q) \in M , based on \{ \bfitvarphi k,j(p, q), yk+1,j\} t - 1

k=1, j \in Ni, the estimate
\bfittheta t,i(p, q) can be obtained by using Algorithm 2.1.

Step 2: (order estimation) With the estimates \{ \bfittheta t,i(p, q)\} (p,q)\in M obtained by Step
1, the estimates (pt,i, qt,i) of system orders are given by minimizing Lt,i(p, q), i.e.,

(pt,i, qt,i) = argmin(p,q)\in MLt,i(p, q).(3.6)

Step 3: (parameter estimation) The estimate \bfittheta t,i(pt,i, qt,i) for the unknown param-
eter \bfittheta (p0, q0) can be obtained by using Algorithm 2.1, where the orders (p, q) are
replaced by the estimates (pt,i, qt,i) obtained in Step 2.
Repeating the above steps, we obtain the order estimates pt,i, qt,i and parameter
estimates \bfittheta t,i(pt,i, qt,i) for t \geq 0 and i = 1, 2, . . . , n.

In fact, the estimates of unknown parameters for each pair (p, q) in Step 1 of the
above Algorithm 3.1 are obtained by minimizing the first term of Lt,i(p, q) in (3.3),
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which makes the estimates of orders not allowed to be smaller than the true orders.
Moreover, the penalty term (i.e., (p+ q)at) makes the estimates of orders no greater
than the true orders. According to these intuitive explanations, we can obtain the
convergence results of the estimates of orders by properly choosing at.

Remark 3.5. In Algorithm 3.1, if the estimates (pt,i, qt,i) for the system order
(p0, q0) are obtained by the following step,

pt,i = argmin1\leq p\leq p\ast Lt,i(p, q
\ast ), qt,i = argmin1\leq q\leq q\ast Lt,i(p

\ast , q),(3.7)

then the sequence (pt,i, qt,i) can also converge to the true order (p0, q0) by a similar
argument as that used in the following Theorem 3.4. At each time instant t, we need
to run p\ast \times q\ast instances to find the minimum of the function Lt,i(p, q) in (3.6), while
in (3.7) we just need to run at most p\ast + q\ast instances.

In the following, we will analyze the convergence of the estimation for system
orders and parameters obtained in Algorithm 3.1. To this end, we first introduce
some preliminary lemmas.

Lemma 3.1 ([36]). In Algorithm 2.1, for any fixed p, q, and t \geq 1, we have

\lambda max\{ \bfitd t(p, q)\Phi 
T
t (p, q)\bfitP t(p, q)\Phi t(p, q)\} \leq 

det(\bfitP  - 1
t+1(p, q)) - det(\bfitP  - 1

t (p, q))

det(\bfitP  - 1
t+1(p, q))

\leq 1.

Lemma 3.2 ([36]). Under Assumptions 3.1 and 3.2, we have for p \geq p0 and
q \geq q0,

n\sum 
i=1

\widetilde \bfittheta T
t,i(p, q)\bfitP 

 - 1
t,i (p, q)

\widetilde \bfittheta t,i(p, q) = O(log rt(p, q)),

where rt(p, q) is defined in Assumption 3.3.

How to deal with the effect of the noises is a crucial step for the convergence
analysis of Algorithm 3.1, and the following lemma provides an upper bound for the
cumulative summation of the noises.

Lemma 3.3. Under Assumptions 3.1 and 3.2, we have for any fixed p, q,

\bfitS T
t+1,i(p, q)\bfitP t+1,i(p, q)\bfitS t+1,i(p, q) = O(log rt(p, q)),

where \bfitS t+1,i(p, q) =
\sum n

j=1

\sum t
k=0 a

(t+1 - k)
ij \bfitvarphi k,j(p, q)wk+1,j, and a

(t+1 - k)
ij is the ith row,

jth column entry of the weight matrix \scrA t+1 - k.

Proof. For the convenience of expression, we use \bfitS t,i,\bfitP k,\Phi k, and \bfitd k to denote
\bfitS t,i(p, q), \bfitP k(p, q), \Phi k(p, q), and \bfitd k(p, q).

Set \bfitS 0 = 0 and \bfitS t = col\{ \bfitS t,1, ...,\bfitS t,n\} . Then we have

\bfitS k+1 =

k\sum 
l=0

A k+1 - l\Phi l\bfitW l+1 = A (\bfitS k +\Phi k\bfitW k+1).

By (2.8) and Lemma 4.2 in [36], we have

\bfitS T
k+1\bfitP k+1\bfitS k+1 = (\bfitS T

k +\bfitW T
k+1\Phi 

T
k )A \bfitP k+1A (\bfitS k +\Phi k\bfitW k+1)

\leq (\bfitS T
k +\bfitW T

k+1\Phi 
T
k )

\=\bfitP k+1(\bfitS k +\Phi k\bfitW k+1)

= (\bfitS T
k +\bfitW T

k+1\Phi 
T
k )(\bfitP k  - \bfitP k\Phi k\bfitd k\Phi 

T
k\bfitP k)(\bfitS k +\Phi k\bfitW k+1)

= \bfitS T
k \bfitP k\bfitS k + 2\bfitW T

k+1\Phi 
T
k\bfitP k\bfitS k +\bfitW T

k+1\Phi 
T
k\bfitP k\Phi k\bfitW k+1  - \bfitS T

k \bfitP k\Phi k\bfitd k\Phi 
T
k\bfitP k\bfitS k

 - 2\bfitS T
k \bfitP k\Phi k\bfitd k\Phi 

T
k\bfitP k\Phi k\bfitW k+1  - \bfitW T

k+1\Phi 
T
k\bfitP k\Phi k\bfitd k\Phi 

T
k\bfitP k\Phi k\bfitW k+1.(3.8)
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Moreover, by the definition of \bfitd k and (2.14), we have

\bfitd k\Phi 
T
k\bfitP k\Phi k = \bfitI  - \bfitd k.(3.9)

By (2.8) and (3.9), we derive that

\=\bfitP k+1\Phi k = \bfitP k\Phi k  - \bfitP k\Phi k\bfitd k\Phi 
T
k\bfitP k\Phi k

= \bfitP k\Phi k  - \bfitP k\Phi k(\bfitI  - \bfitd k) = \bfitP k\Phi k\bfitd k.(3.10)

Substituting (3.9) into (3.8), we have by (3.10)

\bfitS T
k+1\bfitP k+1\bfitS k+1 \leq \bfitS T

k \bfitP k\bfitS k + 2\bfitS T
k \bfitP k\Phi k\bfitd k\bfitW k+1  - \bfitS T

k \bfitP k\Phi k\bfitd k\Phi 
T
k\bfitP k\bfitS k

+ \bfitW T
k+1\Phi 

T
k\bfitP k\Phi k\bfitd k\bfitW k+1

= \bfitS T
k \bfitP k\bfitS k + 2\bfitS T

k
\=\bfitP k+1\Phi k\bfitW k+1  - \bfitS T

k
\=\bfitP k+1\Phi k\bfitd 

 - 1
k \Phi T

k
\=\bfitP k+1\bfitS k

+ \bfitW T
k+1\Phi 

T
k\bfitP k\Phi k\bfitd k\bfitW k+1

\leq \bfitS T
k \bfitP k\bfitS k + 2\bfitS T

k
\=\bfitP k+1\Phi k\bfitW k+1  - \bfitS T

k
\=\bfitP k+1\Phi k\Phi 

T
k
\=\bfitP k+1\bfitS k

+ \bfitW T
k+1\Phi 

T
k\bfitP k\Phi k\bfitd k\bfitW k+1.

By the summation of both sides of the above inequality, we have

\bfitS T
t+1\bfitP t+1\bfitS t+1 +

t\sum 
k=0

\| \bfitS T
k
\=\bfitP k+1\Phi k\| 2

\leq 2

t\sum 
k=0

\bfitS T
k
\=\bfitP k+1\Phi k\bfitW k+1 +

t\sum 
k=0

\bfitW T
k+1\Phi 

T
k\bfitP k\Phi k\bfitd k\bfitW k+1.(3.11)

Next, we estimate the two terms on the right-hand side of (3.11) separately. By
Assumption 3.2 and the martingale estimation theorem (see, e.g., [41]), we can get
the following inequality:

t\sum 
k=0

\bfitS T
k
\=\bfitP k+1\Phi k\bfitW k+1 = O(1) + o

\Biggl( 
t\sum 

k=0

\| \bfitS T
k
\=\bfitP k+1\Phi k\| 2

\Biggr) 
.(3.12)

Then by the proof of Lemma 4.4 in [36], we obtain

t\sum 
k=0

\bfitW T
k+1\Phi 

T
k\bfitP k\Phi k\bfitd k\bfitW k+1 =

t\sum 
k=0

\bfitW T
k+1\bfitd k\Phi 

T
k\bfitP k\Phi k\bfitW k+1 = O(log rt).(3.13)

Substituting (3.12) and (3.13) into (3.11) yields

\bfitS T
t+1\bfitP t+1\bfitS t+1 = O(log rt),

which completes the proof of the lemma.

Remark 3.6. If Assumption 3.2 is relaxed to the following weaker noise condition

sup
t\geq 0

E[| wt+1,i| 2| Ft] < \infty a.s.,(3.14)

then under Assumption 3.1 similar results as those of Lemmas 3.2 and 3.3 can also
be obtained, save that the term `` log rt(p, q)"" in Lemmas 3.2 and 3.3 is replaced by
`` log rt(p, q) (log log rt(p, q))

\tau (for some \tau > 1).""
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Remark 3.7. For the directed communication graph case, if the graph is strongly
connected and balanced (i.e., both the inflow and outflow of each sensor are equal
to 1), we can obtain a similar result as that of the above lemma by just replacing
``A \bfitP k+1A "" with ``A T\bfitP k+1A "" in (3.8).

Now, we present the main results concerning the convergence of the order esti-
mates obtained by Algorithm 3.1.

Theorem 3.4. Under Assumptions 3.1--3.3, the order estimate sequence
(pt,i, qt,i) given by ( 3.6) converges to the true order (p0, q0) a.s., i.e.,

(pt,i, qt,i)  -  -  - \rightarrow 
t\rightarrow \infty 

(p0, q0) a.s. for i \in \{ 1, . . . , n\} .

Proof. For i \in \{ 1, . . . , n\} , we need to show that the sequence (pt,i, qt,i) has only
one limit point (p0, q0). Let (p\prime i, q

\prime 
i) \in M be a limit point of (pt,i, qt,i), i.e., there is a

subsequence \{ tk\} such that

(ptk,i, qtk,i)  -  -  -  - \rightarrow 
k\rightarrow \infty 

(p\prime i, q
\prime 
i).(3.15)

In order to prove (pt,i, qt,i)  -  -  - \rightarrow 
t\rightarrow \infty 

(p0, q0), we just need to show the impossibility of

the following two situations:
(i) p\prime i \geq p0, q

\prime 
i \geq q0, and p\prime i + q\prime i > p0 + q0;

(ii) p\prime i < p0 or q\prime i < q0.
Noting that both ptk,i and qtk,i are integers, by (3.15) we have (ptk,i, qtk,i) \equiv 

(p\prime i, q
\prime 
i) for sufficiently large k. We first show that the situation (i) will not happen by

reduction to absurdity.
Suppose that (i) holds. By (2.5) and (3.5), we see that \sigma tk,i(p

\prime 
i, q

\prime 
i,\bfittheta tk,i(p

\prime 
i, q

\prime 
i))

can be calculated by the following equation:

\sigma tk,i(p
\prime 
i, q

\prime 
i,\bfittheta tk,i(p

\prime 
i, q

\prime 
i))

=

n\sum 
j=1

tk - 1\sum 
l=0

a
(tk - l)
ij [yl+1,j  - \bfittheta T

tk,i
(p\prime i, q

\prime 
i)\bfitvarphi l,j(p

\prime 
i, q

\prime 
i)]

2

=

n\sum 
j=1

tk - 1\sum 
l=0

a
(tk - l)
ij [\widetilde \bfittheta T

tk,i
(p\prime i, q

\prime 
i)\bfitvarphi l,j(p

\prime 
i, q

\prime 
i) + wl+1,j ]

2

= \widetilde \bfittheta T
tk,i

(p\prime i, q
\prime 
i)

\left(  n\sum 
j=1

tk - 1\sum 
l=0

a
(tk - l)
ij \bfitvarphi l,j(p

\prime 
i, q

\prime 
i)\bfitvarphi 

T
l,j(p

\prime 
i, q

\prime 
i)

\right)  \widetilde \bfittheta tk,i(p\prime i, q\prime i)
+ 2\widetilde \bfittheta T

tk,i
(p\prime i, q

\prime 
i)

\left(  n\sum 
j=1

tk - 1\sum 
l=0

a
(tk - l)
ij \bfitvarphi l,j(p

\prime 
i, q

\prime 
i)wl+1,j

\right)  +

n\sum 
j=1

tk - 1\sum 
l=0

a
(tk - l)
ij w2

l+1,j .(3.16)

By Lemmas 3.2 and 3.3, we have the following relationship:\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widetilde \bfittheta T
tk,i

(p\prime i, q
\prime 
i)

\left(  n\sum 
j=1

tk - 1\sum 
l=0

a
(tk - l)
ij \bfitvarphi l,j(p

\prime 
i, q

\prime 
i)wl+1,j

\right)  \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \widetilde \bfittheta T
tk,i

(p\prime i, q
\prime 
i)\bfitP 

 - 1
2

tk,i
(p\prime i, q

\prime 
i)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bfitP 1

2
tk,i

(p\prime i, q
\prime 
i)

\left(  n\sum 
j=1

tk - 1\sum 
l=0

a
(tk - l)
ij \bfitvarphi l,j(p

\prime 
i, q

\prime 
i)wl+1,j

\right)  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
= O(log(rtk(p

\prime 
i, q

\prime 
i))) = O(log(rtk(p

\ast , q\ast ))).(3.17)
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By (2.10) and (2.17), we have for any p and q

\bfitP  - 1
tk,i

(p, q) =

n\sum 
j=1

tk - 1\sum 
l=0

a
(tk - l)
ij \bfitvarphi l,j(p, q)\bfitvarphi 

T
l,j(p, q) +

n\sum 
j=1

a
(tk)
ij \bfitP  - 1

0,j (p, q).(3.18)

By this equation and Lemma 3.2, we can easily obtain that

\widetilde \bfittheta T
tk,i

(p\prime i, q
\prime 
i)

n\sum 
j=1

tk - 1\sum 
l=0

a
(tk - l)
ij \bfitvarphi l,j(p, q)\bfitvarphi 

T
l,j(p

\prime 
i, q

\prime 
i)
\widetilde \bfittheta tk,i(p\prime i, q\prime i)

= O(log rtk(p
\prime 
i, q

\prime 
i)) = O(log(rtk(p

\ast , q\ast ))).(3.19)

Substituting (3.17) and (3.19) into (3.16), we see that there exists a positive constant
C1 satisfying

\sigma tk,i(p
\prime 
i, q

\prime 
i,\bfittheta tk,i(p

\prime 
i, q

\prime 
i)) - 

n\sum 
j=1

tk - 1\sum 
l=0

a
(tk - l)
ij w2

l+1,j \geq  - C1 log(rtk(p
\ast , q\ast )).(3.20)

Now, we will consider \sigma tk,i(p0, q0,\bfittheta tk,i(p0, q0)). By Lemma 2.2, we have for p \geq p0
and q \geq q0,

n\sum 
j=1

tk - 1\sum 
l=0

a
(tk - l)
ij \bfitvarphi l,j(p, q)wl+1,j

=

n\sum 
j=1

a
(tk)
ij \bfitP  - 1

0,j (p, q)
\widetilde \bfittheta 0,j(p, q) - \bfitP  - 1

tk,i
(p, q)\widetilde \bfittheta tk,i(p, q).(3.21)

In a similar way to that used in (3.16), we obtain

\sigma tk,i(p0, q0,\bfittheta tk,i(p0, q0)) - 
n\sum 

j=1

tk - 1\sum 
l=0

a
(tk - l)
ij w2

l+1,j

= \widetilde \bfittheta T
tk,i

(p0, q0)

\left(  n\sum 
j=1

tk - 1\sum 
l=0

a
(tk - l)
ij \bfitvarphi l,j(p0, q0)\bfitvarphi 

T
l,j(p0, q0)

\right)  \widetilde \bfittheta tk,i(p0, q0)
+ 2\widetilde \bfittheta T

tk,i
(p0, q0)

\left(  n\sum 
j=1

tk - 1\sum 
l=0

a
(tk - l)
ij \bfitvarphi l,j(p0, q0)wl+1,j

\right)  .

Combining this with (3.18) and (3.21) yieldsCombining this with

\sigma tk,i(p0, q0,\bfittheta tk,i(p0, q0)) - 
n\sum 

j=1

tk - 1\sum 
l=0

a
(tk - l)
ij w2

l+1,j

(3.22)

= \widetilde \bfittheta T
tk,i

(p0, q0)\bfitP 
 - 1
tk,i

(p0, q0)\widetilde \bfittheta tk,i(p0, q0)
 - \widetilde \bfittheta T

tk,i
(p0, q0)

\left(  n\sum 
j=1

a
(tk)
ij \bfitP  - 1

0,j (p0, q0)

\right)  \widetilde \bfittheta tk,i(p0, q0)
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+ 2\widetilde \bfittheta T
tk,i

(p0, q0)

\left(  n\sum 
j=1

a
(tk)
ij \bfitP  - 1

0,j (p0, q0)
\widetilde \bfittheta 0,j(p0, q0) - \bfitP  - 1

tk,i
(p0, q0)\widetilde \bfittheta tk,i(p0, q0)

\right)  
\leq  - \widetilde \bfittheta T

tk,i
(p0, q0)

\left(  n\sum 
j=1

a
(tk)
ij \bfitP  - 1

0,j (p0, q0)

\right)  \widetilde \bfittheta tk,i(p0, q0)
+ 2\widetilde \bfittheta T

tk,i
(p0, q0)

\left(  n\sum 
j=1

a
(tk)
ij \bfitP  - 1

0,j (p0, q0)
\widetilde \bfittheta 0,j(p0, q0)

\right)  
\leq 

\left(  n\sum 
j=1

a
(tk)
ij
\widetilde \bfittheta T
0,j(p0, q0)\bfitP 

 - 1
0,j (p0, q0)

\widetilde \bfittheta 0,j(p0, q0)
\right)  = O(1),

where the last inequality is obtained by

2\bfitx T\bfitA \bfity \leq \bfitx T\bfitA \bfitx + \bfity T\bfitA \bfity for \bfitA \geq 0.(3.23)

From (3.20) and (3.22), we have

\sigma tk,i(p
\prime 
i, q

\prime 
i,\bfittheta tk,i(p

\prime 
i, q

\prime 
i)) - \sigma tk,i(p0, q0,\bfittheta tk,i(p0, q0)) \geq  - C1 log rtk(p

\ast , q\ast ) - C2,

where C2 is a positive constant. Note that (ptk,i, qtk,i) = argminp,q\in M Ltk,i(p, q). By
Assumption 3.3, we have

0 \geq Ltk,i(ptk,i, qtk,i) - Ltk,i(p0, q0) = Ltk,i(p
\prime 
i, q

\prime 
i) - Ltk,i(p0, q0)

= \sigma tk,i(p
\prime 
i, q

\prime 
i,\bfittheta tk,i(p

\prime 
i, q

\prime 
i)) - \sigma tk,i(p0, q0,\bfittheta tk,i(p0, q0)) + (p\prime i + q\prime i  - p0  - q0)atk

\geq  - C1 log rtk(p
\ast , q\ast ) - C2 + (p\prime i + q\prime i  - p0  - q0)atk

= atk

\biggl( 
 - C1 log rtk(p

\ast , q\ast )

atk
+ (p\prime i + q\prime i  - p0  - q0)

\biggr) 
 - C2 \rightarrow \infty as k \rightarrow \infty ,

which leads to the contradiction. Thus, situation (i) will not happen.
In the following, we will show the impossibility of situation (ii) by reduction to

absurdity. Suppose that (ii) holds, i.e., p\prime i < p0 or q\prime i < q0. In order to analyze
the properties of the estimate error, we introduce the following (si + vi)-dimensional
vector with si = max\{ p0, p\prime i\} , vi = max\{ q0, q\prime i\} ,

\bfittheta tk,i(si, vi) = [bi1,tk , . . . , b
i
si,tk

, ci1,tk , . . . , c
i
vi,tk

]T .

If p\prime i < p0, then bim,tk
\triangleq 0 for p\prime i < m \leq p0; and if q\prime i < q0, then cim,tk

\triangleq 0 for
q\prime i < m \leq q0.

Denote \widetilde \bfittheta tk,i(si, vi) = \bfittheta (si, vi) - \bfittheta tk,i(si, vi). It is clear that

\| \widetilde \bfittheta tk,i(si, vi)\| 2 \geq min\{ | bp0
| 2, | cq0 | 2\} \triangleq \alpha 0 > 0.(3.24)

Then by (2.6), we have

\sigma tk,i(p
\prime 
i, q

\prime 
i,\bfittheta tk,i(p

\prime 
i, q

\prime 
i))

=

n\sum 
j=1

tk - 1\sum 
l=0

a
(tk - l)
ij [\bfittheta T (p0, q0)\bfitvarphi l,j(p0, q0) - \bfittheta T

tk,i
(p\prime i, q

\prime 
i)\bfitvarphi l,j(p

\prime 
i, q

\prime 
i) + wl+1,j ]

2.
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1532 DIE GAN AND ZHIXIN LIU

Hence combining this equation and the definition \widetilde \bfittheta tk,i(si, vi), we obtain

\sigma tk,i(p
\prime 
i, q

\prime 
i,\bfittheta tk,i(p

\prime 
i, q

\prime 
i)) - 

n\sum 
j=1

tk - 1\sum 
l=0

a
(tk - l)
ij w2

l+1,j

= \widetilde \bfittheta T
tk,i

(si, vi)\bfitP 
 - 1
tk,i

(si, vi)\widetilde \bfittheta tk,i(si, vi) - \widetilde \bfittheta T
tk,i

(si, vi)

\left(  n\sum 
j=1

a
(t)
ij \bfitP 

 - 1
0,j (si, vi)

\right)  \widetilde \bfittheta tk,i(si, vi)
+ 2\widetilde \bfittheta T

tk,i
(si, vi)

\left(  n\sum 
j=1

tk - 1\sum 
l=0

a
(tk - l)
ij \bfitvarphi l,j(si, vi)wl+1,j

\right)  
\triangleq \widetilde \bfittheta T

tk,i
(si, vi)\bfitP 

 - 1
tk,i

(si, vi)\widetilde \bfittheta tk,i(si, vi) - M1 +M2.(3.25)

By (3.18) and Remark 3.1, we have for any p and q

\lambda min(\bfitP 
 - 1
tk,i

(p, q)) \geq amin\lambda 
p,q
min(tk),(3.26)

where amin = mini,j\in \scrV a
(D\scrG )
ij > 0. Hence, by (3.26) and Lemma 3.2, we have for p \geq p0

and q \geq q0,

n\sum 
i=1

\| \widetilde \bfittheta t+1,i(p, q)\| 2 = O

\biggl( 
log rt(p, q)

\lambda p,q
min(t)

\biggr) 
.(3.27)

When p\prime i < p0 (as does the case q\prime i < q0), we can use (3.27) in the first p\prime i components

of \widetilde \bfittheta tk,i(si, vi). Then by (2.1) and Assumption 3.3, we obtain \| \widetilde \bfittheta tk,i(si, vi)\| = O(1),
hence we have

M1 \leq \lambda max

\left(  n\sum 
j=1

a
(t)
ij \bfitP 

 - 1
0,j (si, vi)

\right)  \| \widetilde \bfittheta tk,i(si, vi)\| 2 = O(1).(3.28)

In the following, we will analyze M2. Similarly to the analysis of (3.17), by
Lemma 3.3, we have

| M2| \leq 
\bigm\| \bigm\| \bigm\| \widetilde \bfittheta T

tk,i
(si, vi)\bfitP 

 - 1
2

tk,i
(si, vi)

\bigm\| \bigm\| \bigm\| \cdot \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bfitP 1
2
tk,i

(si, vi)

\left(  n\sum 
j=1

tk - 1\sum 
l=0

a
(tk - l)
ij \bfitvarphi l,j(si, vi)wl+1,j

\right)  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
= O

\Bigl\{ \bigm\| \bigm\| \bigm\| \widetilde \bfittheta T
tk,i

(si, vi)\bfitP 
 - 1

2
tk,i

(si, vi)
\bigm\| \bigm\| \bigm\| \cdot log 1

2 (rtk(si, vi))
\Bigr\} 

= O
\Bigl\{ \bigm\| \bigm\| \bigm\| \widetilde \bfittheta T

tk,i
(si, vi)\bfitP 

 - 1
2

tk,i
(si, vi)

\bigm\| \bigm\| \bigm\| \cdot log 1
2 (rtk(p

\ast , q\ast ))
\Bigr\} 
.(3.29)

Therefore, by (3.25)--(3.29), we see that there exist two positive constants C3 and C4

such that

\sigma tk,i(p
\prime 
i, q

\prime 
i,\bfittheta tk,i(p

\prime 
i, q

\prime 
i)) - 

n\sum 
j=1

tk - 1\sum 
l=0

a
(tk - l)
ij w2

l+1,j

\geq \widetilde \bfittheta T
tk,i

(si, vi)\bfitP 
 - 1
tk,i

(si, vi)\widetilde \bfittheta tk,i(si, vi) - C3

 - C4

\bigm\| \bigm\| \bigm\| \widetilde \bfittheta T
tk,i

(si, vi)\bfitP 
 - 1

2
tk,i

(si, vi)
\bigm\| \bigm\| \bigm\| \cdot log 1

2 (rtk(p
\ast , q\ast )).(3.30)
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By Assumption 3.3, (3.24), and (3.26), we have\bigm\| \bigm\| \bigm\| \widetilde \bfittheta T
tk,i

(si, vi)\bfitP 
 - 1

2
tk,i

(si, vi)
\bigm\| \bigm\| \bigm\| \cdot log 1

2 (rtk(p
\ast , q\ast )) = o(\widetilde \bfittheta T

tk,i
(si, vi)\bfitP 

 - 1
tk,i

(si, vi)\widetilde \bfittheta tk,i(si, vi)).
Furthermore, by (3.24) and (3.26), we have

\sigma tk,i(p
\prime 
i, q

\prime 
i,\bfittheta tk,i(p

\prime 
i, q

\prime 
i)) - 

n\sum 
j=1

tk - 1\sum 
l=0

a
(tk - l)
ij w2

l+1,j

= amin\alpha 0\lambda 
si,vi
min (tk)(1 + o(1)) - C3

\geq amin\alpha 0 min\{ \lambda p0,q
\ast 

min (tk), \lambda 
p\ast ,q0
min (tk)\} 

2
 - C3,(3.31)

where (2.1) is used in the last inequality.
By (3.3), (3.22), (3.31), and Assumption 3.3, for large k and some positive con-

stant C5, we have the following inequality for i \in \{ 1, 2, \cdot \cdot \cdot , n\} ,

0 \geq Ltk,i(ptk,i, qtk,i) - Ltk,i(p0, q0) = Ltk,i(p
\prime 
i, q

\prime 
i) - Ltk,i(p0, q0)

= \sigma tk,i(p
\prime 
i, q

\prime 
i,\bfittheta tk,i(p

\prime 
i, q

\prime 
i)) - \sigma tk,i(p0, q0,\bfittheta tk,i(p0, q0)) + (p\prime i + q\prime i  - p0  - q0)atk

\geq amin\alpha 0 min\{ \lambda p0,q
\ast 

min (tk), \lambda 
p\ast ,q0
min (tk)\} 

2
 - C5 + (p\prime i + q\prime i  - p0  - q0)atk

\geq amin\alpha 0 min\{ \lambda p0,q
\ast 

min (tk), \lambda 
p\ast ,q0
min (tk)\} 

2

\Bigl( 
1 +

2(p\prime i + q\prime i  - p0  - q0)atk
amin\alpha 0 min\{ \lambda p0,q\ast 

min (tk), \lambda 
p\ast ,q0
min (tk)\} 

\Bigr) 
 - C5

\geq amin\alpha 0 min\{ \lambda p0,q
\ast 

min (tk), \lambda 
p\ast ,q0
min (tk)\} 

4
 - C5 \rightarrow \infty ,

which leads to a contradiction. The proof of the theorem is complete.

Remark 3.8. Under Assumption 3.1 and the weaker noise condition (3.14), by
Remark 3.6, we can verify that the result of Theorem 3.4 still holds by taking the
sequence \{ at\} in Assumption 3.3 to satisfy the following conditions,

log rt(p
\ast , q\ast )(log log rt(p

\ast , q\ast ))\tau 

at
 -  -  - \rightarrow 
t\rightarrow \infty 

0,
at

\lambda p,q
min(t)

 -  -  - \rightarrow 
t\rightarrow \infty 

0 a.s.,

where (p, q) \in M\ast .

Note that both the estimates (pt,i, qt,i) and the true orders (p0, q0) are integers;
from Theorem 3.4, we see that there exists a large enough T such that pt,i = p0 and
qt,i = q0 for t \geq T . Thus, from (3.27) and Assumption 3.3, we have the following
consistent estimation of the parameter vector \bfittheta (p0, q0).

Theorem 3.5. Under the conditions of Theorem 3.4 for any i \in \{ 1, \cdot \cdot \cdot , n\} , we
have

\bfittheta t,i(pt,i, qt,i)  -  -  - \rightarrow 
t\rightarrow \infty 

\bfittheta (p0, q0) a.s.,

where \bfittheta t,i(pt,i, qt,i) is obtained by Algorithm 3.1.

4. Case II: The upper bounds of true orders are unknown. In this section,
we consider a general case where the upper bounds of the system orders are unknown.
We first give some assumptions on the system signals and the noise.
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1534 DIE GAN AND ZHIXIN LIU

Assumption 4.1. For i \in \{ 1, \cdot \cdot \cdot , n\} , the noise sequence \{ wt,i,Ft\} is a martingale
difference sequence satisfying

sup
t\geq 0

E[| wt+1,i| 2| Ft] < \infty , \| wt,i\| = O(\eta i(t)) a.s.,

where Ft is defined in Assumption 3.2 and \eta i(t) is a positive, deterministic, nonde-
creasing function satisfying

sup
t

\eta i(e
t+1)/\eta i(e

t) < \infty .

The term ``\| wt,i\| = O(\eta i(t))"" in Assumption 4.1 describes the growth rate of the
noise, which means the double array martingale estimation theory (Lemma 4.1) can
be used to deal with the cumulative effect of the noise. It can be easily verified that
the commonly used bounded or white Gaussian noises can satisfy this assumption.

In order to simplify the analysis of the estimation error, we need to introduce
an assumption on the input and output signals which implies that the system is not
explosive. This assumption is commonly used in the stability analysis of the closed-
loop feedback control systems for a single sensor case (see, e.g., [7, 8, 15]).

Assumption 4.2. There exists a positive constant b such that the input and output
signals satisfy

n\sum 
i=1

t - 1\sum 
k=0

(\| yk,i\| 2 + \| uk,i\| 2) = O(tb) a.s.(4.1)

Similarly to Assumption 3.3 in section 3, we introduce the following cooperative
excitation condition which can be considered as an extension of the excitation con-
dition used in [15] for a single sensor to the distributed order estimation algorithm
when the upper bounds of true orders are unknown. This condition can also reflect
the joint effect of multiple sensors as illustrated in Remark 3.4.

Assumption 4.3. (cooperative excitation condition II). A sequence \{ \=at\} of positive
real numbers can be found such that \=at  -  -  - \rightarrow 

t\rightarrow \infty 
\infty and

ht log t+ [\eta (t) log log t]2

\=at
 -  -  - \rightarrow 
t\rightarrow \infty 

0,
\=at

\lambda 0
min(t)

 -  -  - \rightarrow 
t\rightarrow \infty 

0,(4.2)

hold a.s., where

\lambda 0
min(t) = \lambda min

\left\{   
n\sum 

j=1

\bfitP  - 1
0,j (m0,m0) +

n\sum 
i=1

t - D\scrG \sum 
k=0

\bfitvarphi 0
k,i(\bfitvarphi 

0
k,i)

T

\right\}   
with \eta (t) \triangleq (

\sum n
i=1 \eta 

2
i (t))

1
2 , \bfitvarphi 0

t,i = [yt,i, . . . , yt - m0+1,i, ut,i, . . . , ut - m0+1,i, ]
T , m0 \triangleq 

max\{ p0, q0\} , and the regression lag ht is chosen as ht = O((log t)\alpha )(\alpha > 1), and
log t = o(ht).

We will now construct the algorithm to estimate both the system orders and
parameters in a distributed way when the upper bounds of orders are unknown. For
estimating the unknown orders (p0, q0), we introduce the following LIC \=Lt,i(p, q) for
the sensor i,

\=Lt,i(p, q) = \sigma t,i(p, q,\bfittheta t,i(p, q)) + (p+ q)\=at,(4.3)

where \sigma t,i(p, q,\bfitbeta (p, q)) is recursively defined in (3.4).
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By minimizing the LIC (4.3) and using Algorithm 2.1, we obtain the following
distributed algorithm.

Algorithm 4.1.

For any given sensor i \in \{ 1, . . . , n\} , the distributed algorithm for the estimation of
the system orders and the parameters is defined at the time instant t \geq 1 as follows.
Step 1: For any 0 \leq s \leq [log t], based on \{ \bfitvarphi k,j(s, s), yk+1,j\} t - 1

k=1, j \in Ni, the estimate
\bfittheta t,i(s, s) can obtained by using Algorithm 2.1, where the orders (p, q) are replaced by
(s, s) (0 \leq s \leq [log t]).

Step 2: (order estimation) With the estimates \{ \bfittheta t,i(s, s)\} [log t]
s=0 obtained by Step 1,

take \^mt,i by minimizing \=Lt,i(s, s) for 0 \leq s \leq [log t];
take \^pt,i by minimizing \=Lt,i(p, \^mt,i) for 0 \leq p \leq \^mt,i;
take \^qt,i by minimizing \=Lt,i(\^pt,i, q) for 0 \leq q \leq \^mt,i.

Step 3: (parameter estimation) The estimate \bfittheta t,i(\^pt,i, \^qt,i) for the unknown param-
eter vector \bfittheta (p0, q0) is obtained by using Algorithm 2.1, where the orders (p, q) are
replaced by the estimates (\^pt,i, \^qt,i) obtained by Step 2.
Output: \^pt,i, \^qt,i and \bfittheta t,i(\^pt,i, \^qt,i).

Remark 4.1. In Step 2 of the above Algorithm 4.1, we first estimate the maximum
valuem0 of true orders whose upper bound is characterized by the function log t. Then
the true orders p0, q0 are obtained by searching among at most 2 \^mt,i points at each
time instant t.

In the following, we will provide the consistency analysis of Algorithm 4.1 when
the upper bounds of orders are unknown, in which a crucial step is to prove that for any
i, \^mt,i \rightarrow m0 as t \rightarrow \infty . Then by the order estimation procedure in Algorithm 4.1, the
convergence of the estimates for the system orders and parameters can be obtained
by a similar analysis as those in section 3. To this end, we need to introduce the
following double array martingale estimation lemma to deal with the noise effect in

the form of max1\leq m\leq ht

\bigm\| \bigm\| \bigm\| \sum t
k=1 fk(m)wk+1

\bigm\| \bigm\| \bigm\| .
Lemma 4.1 ([15]). Let \{ vt,Ft\} be an s\prime -dimensional martingale difference se-

quence satisfying \| vt\| = o(\rho (t)) a.s., supt E(\| vt+1\| 2| Ft) < \infty a.s., where the prop-
erties of \rho (t) are described as the same as \eta i(t) in Assumption 4.1. Assume that
ft(m), t,m = 1, 2, ..., is an Ft-measurable, r\prime \times s\prime -dimensional random matrix satis-
fying \| ft(m)\| \leq C < \infty a.s. for all t, m, and some deterministic constant C. Then
for ht = O([log t]\alpha ) (\alpha > 1), the following property holds as t \rightarrow \infty :

max
1\leq m\leq ht

max
1\leq j\leq t

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
j\sum 

k=1

fk(m)vk+1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| = O

\Biggl( 
max

1\leq m\leq ht

t\sum 
k=1

\| fk(m)\| 2
\Biggr) 

+ o(\rho (t) log log t) a.s.

In order to simplify the expression of the following lemmas and theorems, we
write (l) for (l, l) in \bfittheta t,i,\bfitvarphi t,i and \bfitP t,i when p = q = l.

Lemma 4.2. Let Vt(l) = \widetilde \Theta T
t (l)\bfitP 

 - 1
t (l) \widetilde \Theta t(l). Then under Assumptions 3.1 and

4.1--4.3, we have

max
m0\leq l\leq ht

Vt+1(l) = O(ht log t) + o(\eta 2(t) log log t),

where ht and \eta (t) are defined in Assumption 4.3.

D
ow

nl
oa

de
d 

06
/0

2/
22

 to
 1

24
.1

6.
14

8.
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1536 DIE GAN AND ZHIXIN LIU

Proof. By the proof of Lemma 4.4 in [36], we have for l \geq m0

Vt+1(l) = O(1) +

t\sum 
k=0

\bfitW T
k+1\bfitd k(l)\Phi 

T
k (l)\bfitP k(l)\Phi k(l)\bfitW k+1.(4.4)

By (3.18) and Lemma 3.1, we have

max
1\leq l\leq ht

t\sum 
k=0

\lambda max\{ \bfitd k(l)\Phi 
T
k (l)\bfitP k(l)\Phi k(l)\} 

\leq max
1\leq l\leq ht

[log det(\bfitP  - 1
t+1(l)) - log det(\bfitP  - 1

0 (l))]

= O

\biggl\{ 
max

1\leq l\leq ht

\Bigl( 
l \cdot log

\Bigl( 
\lambda max\bfitP 

 - 1
0 (l) +

n\sum 
j=1

t\sum 
k=0

\| \bfitvarphi k,j(l)\| 2
\Bigr) \Bigr) \biggr\} 

= O(ht log t),(4.5)

where Assumption 4.2 is used in the last equation. By Assumptions 4.1, 3.1 and 4.1,
we have

max
1\leq l\leq ht

t\sum 
k=0

\lambda max\{ \bfitd k(l)\Phi 
T
k (l)\bfitP k(l)\Phi k(l)\} (\| \bfitW k+1\| 2  - E(\| \bfitW k+1\| 2| Fk))

= o(\eta 2(t) log log t) +O

\Biggl( 
max

1\leq l\leq ht

t\sum 
k=0

\lambda max\{ \bfitd k(l)\Phi 
T
k (l)\bfitP k(l)\Phi k(l)\} 

\Biggr) 
.

Hence by (4.5) and Assumption 4.1, we have

max
1\leq l\leq ht

t\sum 
k=0

\bfitW T
k+1\bfitd k(l)\Phi 

T
k (l)\bfitP k(l)\Phi k(l)\bfitW k+1

\leq max
1\leq l\leq ht

t\sum 
k=0

\lambda max\{ \bfitd k(l)\Phi 
T
k (l)\bfitP k(l)\Phi k(l)\} \| \bfitW k+1\| 2

\leq max
1\leq l\leq ht

t\sum 
k=0

\lambda max\{ \bfitd k(l)\Phi 
T
k (l)\bfitP k(l)\Phi k(l)\} (\| \bfitW k+1\| 2  - E(\| \bfitW k+1\| 2| Fk))

+ max
1\leq l\leq ht

t\sum 
k=0

\lambda max\{ \bfitd k(l)\Phi 
T
k (l)\bfitP k(l)\Phi k(l)\} E(\| \bfitW k+1\| 2| Fk)

= o(\eta 2(t) log log t) +O(ht log t).(4.6)

Substituting (4.6) into (4.4) yields the result of the lemma.

Compared with [15], we need to deal with the cooperative effect of cumulative
noises of multiple sensors which is shown by the following lemma. This lemma can
be derived by following the proof line of Lemma 3.3, and we omit it here.

Lemma 4.3. Under Assumptions 3.1 and 4.1--4.3, for any i \in \{ 1, ..., n\} , we have

max
1\leq l\leq ht

\bigl\{ 
\bfitS T
t,i(l)\bfitP t,i(l)\bfitS t,i(l)

\bigr\} 
= O(ht log t) + o(\{ \eta (t) log log t\} 2),

where \bfitS t,i(l) =
\Bigl( \sum n

j=1

\sum t - 1
k=0 a

(t - k)
ij \bfitvarphi k,j(l)wk+1,j

\Bigr) 
, and ht and \eta (t) are defined in

Assumption 4.3.
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The following theorem will establish the convergence of the estimates \^mt,i, \^pt,i, \^qt,i
and \bfittheta t,i(\^pt,i, \^qt,i) given by Algorithm 4.1 to the true values.

Theorem 4.4. Under Assumptions 3.1 and 4.1--4.3, we have for any i \in 
\{ 1, . . . , n\} ,

\^mt,i  -  -  - \rightarrow 
t\rightarrow \infty 

m0 a.s.,(4.7)

(\^pt,i, \^qt,i)  -  -  - \rightarrow 
t\rightarrow \infty 

(p0, q0) a.s.,(4.8)

\bfittheta t,i(\^pt,i, \^qt,i)  -  -  - \rightarrow 
t\rightarrow \infty 

\bfittheta (p0, q0) a.s.(4.9)

Proof. We first show that lim supt\rightarrow \infty \^mi(t) \leq m0 a.s. For p > p0, q > q0, set

\bfittheta (p, q) = [b1, . . . , bp, c1, . . . , cq]
T ,\widetilde \bfittheta t,i(p, q) = \bfittheta (p, q) - \bfittheta t,i(p, q),

where bp = 0, p > p0, cq = 0, q > q0, \bfittheta t,i(p, q) is obtained by Algorithm 2.1.
Then by (3.5), for l \geq m0, we have

\sigma t,i(l, l,\bfittheta t,i(l, l)) =

n\sum 
j=1

t - 1\sum 
k=0

a
(t - k)
ij [\widetilde \bfittheta T

t,i(l)\bfitvarphi k,j(l) + wk+1,j ]
2

= \widetilde \bfittheta T
t,i(l)

\left(  n\sum 
j=1

t - 1\sum 
k=0

a
(t - k)
ij \bfitvarphi k,j(l)\bfitvarphi 

T
k,j(l)

\right)  \widetilde \bfittheta t,i(l)
+ 2\widetilde \bfittheta T

t,i(l)

\left(  n\sum 
j=1

t - 1\sum 
k=0

a
(t - k)
ij \bfitvarphi k,j(l)wk+1,j

\right)  +

n\sum 
j=1

t - 1\sum 
k=0

a
(t - k)
ij w2

k+1,j

\triangleq I1 + I2 +

n\sum 
j=1

t - 1\sum 
k=0

a
(t - k)
ij w2

k+1,j .(4.10)

In the following, we estimate I1, I2 separately.
On the one hand, by (3.18) (3.21) and (3.23), we have

I1 + I2 = \widetilde \bfittheta T
t,i(l)

\left(  \bfitP  - 1
t,i (l) - 

n\sum 
j=1

a
(t)
ij \bfitP 

 - 1
0,j (l)

\right)  \widetilde \bfittheta t,i(l)
+ 2\widetilde \bfittheta T

t,i(l)

\left(  n\sum 
j=1

a
(t)
ij \bfitP 

 - 1
0,j (l)

\widetilde \bfittheta 0,j(l) - \bfitP  - 1
t,i (l)

\widetilde \bfittheta t,i(l)
\right)  

=  - \widetilde \bfittheta T
t,i(l)\bfitP 

 - 1
t,i (l)

\widetilde \bfittheta t,i(l) + 2\widetilde \bfittheta T
t,i(l)

\left(  n\sum 
j=1

a
(t)
ij \bfitP 

 - 1
0,j (l)

\widetilde \bfittheta 0,j(l)
\right)  

 - \widetilde \bfittheta T
t,i(l)

\left(  n\sum 
j=1

a
(t)
ij \bfitP 

 - 1
0,j (l)

\right)  \widetilde \bfittheta t,i(l)
\leq  - \widetilde \bfittheta T

t,i(l)\bfitP 
 - 1
t,i (l)

\widetilde \bfittheta t,i(l) + n\sum 
j=1

\Bigl( 
a
(t)
ij
\widetilde \bfittheta T
0,j(l)\bfitP 

 - 1
0,j (l)

\widetilde \bfittheta 0,j(l)\Bigr) .(4.11)
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Hence by (4.10) and (4.11), we have for l \geq m0,

\sigma t,i(l, l,\bfittheta t,i(l, l)) - 
n\sum 

j=1

t - 1\sum 
k=0

a
(t - k)
ij w2

k+1,j \leq  - \widetilde \bfittheta T
t,i(l)\bfitP 

 - 1
t,i (l)

\widetilde \bfittheta t,i(l) +O(1).(4.12)

On the other hand, by Lemma 4.3, we have

| I2| \leq 2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \widetilde \bfittheta T
t,i(l)\bfitP 

 - 1
2

t,i (l)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \cdot 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bfitP 1

2
t,i(l)

\left(  n\sum 
j=1

t - 1\sum 
k=0

a
(t - k)
ij \bfitvarphi k,j(l)wk+1,j

\right)  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\leq O

\Bigl\{ \bigm\| \bigm\| \bigm\| \widetilde \bfittheta T
t,i(l)\bfitP 

 - 1
2

t,i (l)
\bigm\| \bigm\| \bigm\| \cdot \{ o([\eta (t) log log t]2) +O(ht log t)\} 

1
2

\Bigr\} 
.

Then for l \geq m0 and sufficiently large t, by (3.18), (4.10), and Assumption 4.3 , we
have for some positive constant C6,

\sigma t,i(l, l,\bfittheta t,i(l, l)) - 
n\sum 

j=1

t - 1\sum 
k=0

a
(t - k)
ij w2

k+1,j

\geq 1

2
\widetilde \bfittheta T
t,i(l)\bfitP 

 - 1
t,i (l)

\widetilde \bfittheta t,i(l)
 - C6

\Bigl\{ \bigm\| \bigm\| \bigm\| \widetilde \bfittheta T
t,i(l)\bfitP 

 - 1
2

t,i (l)
\bigm\| \bigm\| \bigm\| \cdot \{ o([\eta (t) log log t]2) + ht log t\} 

1
2

\Bigr\} 
.

Hence by (4.3) and Lemma 4.2, we have for sufficiently large t,

max
m0<l\leq log t

\{ \=Lt,i(m0,m0) - \=Lt,i(l, l)\} 

= max
m0<l\leq log t

\Bigl\{ 
\sigma t,i(m0,m0,\bfittheta t,i(m0,m0)) - 

n\sum 
j=1

t - 1\sum 
k=0

a
(t - k)
ij w2

k+1,j

 - \sigma t,i(l, l,\bfittheta t,i(l, l)) +

n\sum 
j=1

t - 1\sum 
k=0

a
(t - k)
ij w2

k+1,j  - 2(l  - m0)\=at

\Bigr\} 
\leq max

m0<l\leq log t
O
\Bigl\{ \bigm\| \bigm\| \bigm\| \widetilde \bfittheta T

t,i(l)\bfitP 
 - 1

2
t,i (l)

\bigm\| \bigm\| \bigm\| \{ o([\eta (t) log log t]2) +O(ht log t)\} 
1
2

\Bigr\} 
+O(1) - 2\=at

= o([\eta (t) log log t]2) +O(ht log t) +O(1) - 2\=at < 0.

By the above equation, we have

\=Lt,i(m0,m0) < min
m0<l\leq log t

\=Lt,i(l, l),

which implies that lim supt\rightarrow \infty \^mt,i \leq m0.
We now show that lim inft\rightarrow \infty \^mt,i \geq m0 holds a.s. For any l \leq m0, let us write

\bfittheta t,i(l) given by Algorithm 2.1 in its component form:

\bfittheta t,i(l) = [bi1,t, . . . , b
i
l,t, c

i
1,t, . . . , c

i
l,t]

T \in \BbbR 2l.

In order to avoid confusion, for any l \leq m0, we denote the following m0-dimensional
vector,

\bfittheta t,i(m0) = [bi1,t, . . . , b
i
m0,t, c

i
1,t, . . . , c

i
m0,t]

T \in \BbbR 2m0 ,
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where bij,t = 0, cij,t = 0 for m0 > j > l.
For any l \leq m0, we have

yk+1,j  - \bfittheta T
t,i(l)\bfitvarphi k,j(l) = yk+1,j  - \bfittheta T

t,i(m0)\bfitvarphi k,j(m0)

= yk+1,j  - \bfittheta T (m0)\bfitvarphi k,j(m0) + [\bfittheta T (m0) - \bfittheta T
t,i(m0)]\bfitvarphi k,j(m0)

= wk+1,j + \widetilde \bfittheta T
t,i(m0)\bfitvarphi k,j(m0),

where \widetilde \bfittheta t,i(m0) = \bfittheta (m0) - \bfittheta t,i(m0) \in \BbbR 2m0 .
Hence by (3.5), we have for any l \leq m0

\sigma t,i(l, l,\bfittheta t,i(l, l)) =

n\sum 
j=1

t - 1\sum 
k=0

a
(t - k)
ij (wk+1,j + \widetilde \bfittheta T

t,i(m0)\bfitvarphi k,j(m0))
2.

Thus, we have for any l \leq m0

\sigma t,i(l, l,\bfittheta t,i(l, l)) - 
n\sum 

j=1

t - 1\sum 
k=0

a
(t - k)
ij w2

k+1,j

= \widetilde \bfittheta T
t,i(m0)

\left(  n\sum 
j=1

t - 1\sum 
k=0

a
(t - k)
ij \bfitvarphi k,j(m0)\bfitvarphi 

T
k,j(m0)

\right)  \widetilde \bfittheta t,i(m0)

+ 2\widetilde \bfittheta T
t,i(m0)

\left(  n\sum 
j=1

t - 1\sum 
k=0

a
(t - k)
ij \bfitvarphi k,j(m0)wk+1,j

\right)  \triangleq J1 + J2.(4.13)

In the following, we estimate J1, J2. For l < m0, by the definition of \widetilde \bfittheta t,i(m0), we
have

\| \widetilde \bfittheta t,i(m0)\| 2 \geq min\{ | bp0 | 2, | cq0 | 2\} = \alpha 0 > 0.(4.14)

Then by (3.18), we have

\widetilde \bfittheta T
t,i(m0)\bfitP 

 - 1
t,i (m0)\widetilde \bfittheta t,i(m0) \geq amin\lambda 

0
min(t)\alpha 0.(4.15)

Moreover, by (2.1), Assumption 4.3, and Lemma 4.2, we have

\widetilde \bfittheta T
t,i(m0)

\left(  n\sum 
j=1

a
(t)
ij \bfitP 

 - 1
0,j (m0)

\right)  \widetilde \bfittheta t,i(m0)

\leq \lambda max

\left(  n\sum 
j=1

a
(t)
ij \bfitP 

 - 1
0,j (m0)

\right)  \| \widetilde \bfittheta t,i(m0)\| 2 = O(1).

Then for l < m0, by (3.18), we obtain for some positive constant C7,

J1 = \widetilde \bfittheta T
t,i(m0)\bfitP 

 - 1
t,i (m0)\widetilde \bfittheta t,i(m0) - \widetilde \bfittheta T

t,i(m0)

\left(  n\sum 
j=1

a
(t)
ij \bfitP 

 - 1
0,j (m0)

\right)  \widetilde \bfittheta t,i(m0)

\geq \widetilde \bfittheta T
t,i(m0)\bfitP 

 - 1
t,i (m0)\widetilde \bfittheta t,i(m0) - C7.(4.16)
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By Lemma 4.3, we have

| J2| \leq 2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \widetilde \bfittheta T
t,i(m0)\bfitP 

 - 1
2

t,i (m0)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \cdot 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bfitP 1

2
t,i(m0)

\left(  n\sum 
j=1

t - 1\sum 
k=0

a
(t - k)
ij \bfitvarphi k,j(m0)wk+1,j

\right)  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\leq O

\Bigl\{ \bigm\| \bigm\| \bigm\| \widetilde \bfittheta T
t,i(m0)\bfitP 

 - 1
2

t,i (m0)
\bigm\| \bigm\| \bigm\| \cdot \{ o([\eta (t) log log t]2) +O(ht log t)\} 

1
2

\Bigr\} 
.(4.17)

Then by (4.15)--(4.17) and Assumption 4.3, we have for large t

J1 + J2 \geq \widetilde \bfittheta T
t,i(m0)\bfitP 

 - 1
t,i (m0)\widetilde \bfittheta t,i(m0) - C8

\Bigl\{ \bigm\| \bigm\| \bigm\| \widetilde \bfittheta T
t,i(m0)\bfitP 

 - 1
2

t,i (m0)
\bigm\| \bigm\| \bigm\| 

\cdot \{ o([\eta (t) log log t]2) +O(ht log t)\} 
1
2

\Bigr\} 
 - C7

\geq amin\alpha 0\lambda 
0
min(t)(1 + o(1)) a.s.,

where C8 is a positive constant.
Hence by (4.13), we have for any l < m0,

\sigma t,i(l, l,\bfittheta t,i(l, l)) \geq amin\alpha 0\lambda 
0
min(t)(1 + o(1)) +

n\sum 
j=1

t - 1\sum 
k=0

a
(t - k)
ij w2

k+1,j .(4.18)

For l = m0, by (4.12) and Lemma 4.2, we have

\sigma t,i(m0,m0,\bfittheta t,i(m0,m0))

\leq  - \widetilde \bfittheta T
t,i(m0)\bfitP 

 - 1
t,i (m0)\widetilde \bfittheta t,i(m0) +

n\sum 
j=1

t - 1\sum 
k=0

a
(t - k)
ij w2

k+1,j +O(1)

\leq O(ht log t) + o([\eta (t) log log t]2) +

n\sum 
j=1

t - 1\sum 
k=0

a
(t - k)
ij w2

k+1,j +O(1).(4.19)

For any l < m0, by (4.18)--(4.19) and Assumption 4.3, we have

\=Lt,i(l, l) - \=Lt,i(m0,m0)

= \sigma t,i(l, l,\bfittheta t,i(l, l)) - \sigma t,i(m0,m0,\bfittheta t,i(m0,m0)) + 2(l  - m0)\=at

\geq amin\alpha 0\lambda 
0
min(t)(1 + o(1)) - C9((ht log t) + o([\eta (t) log log t]2)) + C10  - C11\=at

= amin\lambda 
0
min(t)(\alpha 0 + o(1)) > 0 as t \rightarrow \infty ,

where C9, C10, C11 are positive constants. Hence we have

\=Lt,i(m0,m0) < min
1\leq l<m0

\=Lt,i(l, l),

which implies that lim inft\rightarrow \infty \^mt,i \geq m0 a.s. Thus the first assertion (4.7) has been
proved.

By \^mt,i  -  -  - \rightarrow 
t\rightarrow \infty 

m0, the proof of (4.8) can be carried out by a similar argument as

that used in section 3.
Note that both the estimates (\^pt,i, \^qt,i) and the true orders (p0, q0) are integers,

from (4.8); we see that there exists a large enough T such that \^pt,i = p0 and \^qt,i = q0
for t \geq T . By the proof of Lemma 4.2, we have

Vt(p0, q0) = O(ht log t) + o(\eta 2(t) log log t).
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Therefore,

\| \bfittheta t,i(p0, q0) - \bfittheta (p0, q0)\| 2 =
O(ht log t) + o(\eta 2(t) log log t)

\lambda 0
min(t)

.

The convergence of the parameters can be obtained by Assumption 4.3. This com-
pletes the proof of the theorem.

Remark 4.2. From Theorem 4.4 (also Theorems 3.4 and 3.5), we see that the
convergence of the estimates for both the system orders and parameters are derived
without using the independency or stationarity assumptions on the regression vectors,
which makes it possible to apply our distributed algorithms to practical feedback
control systems.

Remark 4.3. We note that in the area of stochastic adaptive control and opti-
mization (see e.g., [42, 43]), the dither signals are often introduced into the controller
design to deal with the fundamental conflict between parameter estimation and con-
trol performance, i.e., the adaptive controller can be taken as the form ut,i = u0

t,i+vt,i,

where u0
t,i is the desired controller and vt,i is the dither signal to enhance the excita-

tion condition in the controller. By following similar analyses as those used in [42] and
[43], we can show that cooperative excitation conditions I and II can be satisfied when
the controllers are designed according to the above manner, and thus the convergence
of the distributed algorithms can be obtained.

5. A simulation example. In this section, we provide an example to demon-
strate the theoretical results obtained in this paper. For convenience, we just consider
the first case where the true orders have known upper bounds, and the results for the
case where the upper bounds of the true orders are unknown are almost the same.

Example 5.1. Consider a network composed of n = 6 sensors whose dynamics
obey the following dynamic model

yt+1,i = \bfittheta T\bfitvarphi t,i + wt+1,i,(5.1)

where both the system order p0 and the parameter \bfittheta \in \BbbR p0 are unknown. The noise
sequence \{ wt,i, t \geq 1, i = 1, . . . , 6\} in (5.1) is independent and identically distrib-
uted with wt,i \sim \scrN (0, 0.1) (Gaussian distribution with zero mean and variance 0.1).
Assume that an upper bound p\ast = 5 for the unknown order is available. Let the
regression vectors \bfitvarphi t,i \in \BbbR p (1 \leq p \leq p\ast , i = 1, . . . , 6, t \geq 1) be generated by the
following state space model,

\bfitx t,i = \bfitA i\bfitx t - 1,i +\bfitB i\varepsilon t,i,

\bfitvarphi t,i = \bfitC i\bfitx t,i,
,(5.2)

where \bfitx t,i \in \BbbR p is the state of the above system with \bfitx 0,i = [1, . . . , 1\underbrace{}  \underbrace{}  
p

]T , the matrices

\bfitA i, \bfitB i, and \bfitC i (i = 1, 2, . . . , 6) are chosen according to the following way such that
the excitation condition for any individual sensor cannot be satisfied,

\bfitA i = diag\{ 1.15, . . . , 1.15\underbrace{}  \underbrace{}  
p

\} ,

\bfitB i = \bfite \bfitj \in \BbbR p,

\bfitC i = col\{ 0, . . . , 0, \bfite j
jth

, 0, . . . , 0\} \in \BbbR p\times p,
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1542 DIE GAN AND ZHIXIN LIU

where j = mod(i, p) and \bfite j (j = 1, . . . ,m) is the jth column of the identity matrix \bfitI p
(1 \leq p \leq p\ast ), and the noise sequence \{ \varepsilon t,i, t \geq 1, i = 1, . . . , n\} in (5.2) is independent
and identically distributed with \varepsilon t,i \sim \scrN (0, 0.2). All sensors will estimate the system
order p0 = 4 and parameter \bfittheta = [1, 0.5, 3, - 1.8]T . The initial estimate is taken as
\bfittheta 0,i = [2, . . . , 2\underbrace{}  \underbrace{}  

p

]T for i = 1, 2, . . . , n. We use the Metropolis rule in [44] to construct

the weights in the network topology, i.e.,

ali =

\left\{     
1 - 

\sum 
j \not =i

aij if l = i,

1/(max\{ ni, nl\} ) if l \in Ni \setminus \{ i\} ,
(5.3)

where ni is the degree of the node i.

It can be verified that for each sensor i (i = 1, . . . , 6), the regression signals \bfitvarphi t,i

(generated by (5.2)) have no adequate excitation to estimate the unknown order and
parameter, but they can cooperate to satisfy cooperative excitation condition I (i.e.,
Assumption 3.3) by taking at = t\alpha with \alpha > 1. We repeat the simulation 100 times
with the same initial states.

Figures 1 and 2 show the simulation results for the estimation of the unknown
system order and parameter generated by Algorithm 3.1 and the non-cooperative
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Fig. 1. The order estimate sequences \{ pt,i\} 200t=0 of all sensors by Algorithm 3.1 and noncooper-
ative algorithm in [7].

0 50 100 150 200

time

0

2

4

6

8

10

12

14

E
st

im
at

io
n 

er
ro

r

Estimation errors of all sensors by Algorithm 3.1

sensor 1
sensor 2
sensor 3
sensor 4
sensor 5
sensor 6

0 50 100 150 200

time

2

4

6

8

10

12

14

16

18

20

E
st

im
at

io
n 

er
ro

r

Estimation errors of all sensors by non-cooperative algorithm 

sensor 1
sensor 2
sensor 3
sensor 4
sensor 5
sensor 6

Fig. 2. The parameter estimation errors of Algorithm 3.1 and noncooperative algorithm in [7].
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estimation algorithm, respectively. From Figure 1, we can see that the order estimates
\{ pt,i\} 200t=0 (i = 1, . . . , 6) generated by Algorithm 3.1 can converge to the true order,
while the estimates obtained form the noncooperative estimation algorithm cannot.
Moreover, from Figure 2, it is clear that the estimation error of unknown parameters
\| \widetilde \bfittheta t,i(p\ast )\| 2 obtained by Algorithm 3.1 converges to zero as t increases, while the
estimation error obtained by the noncooperative estimation algorithm cannot converge
to zero. Therefore, the estimation task can be fulfilled through exchanging information
between sensors even though any individual sensor cannot.

6. Conclusion. In this paper, we proposed distributed algorithms to simulta-
neously estimate both the unknown system orders and parameters by minimizing the
LIC and using the distributed LS algorithm. For the case where the upper bounds of
true orders are known, we show that the estimates of the parameters and the orders
can converge to the true values under the cooperative excitation condition introduced
in this paper. We note that the convergence results are obtained without using the
independency and stationarity assumptions of regression vectors as is commonly used
in most existing literature. Moreover, for the case where the upper bounds of true
orders are unknown, we constructed a similar distributed algorithm to estimate both
the parameters and the orders by introducing a time-varying regression lag, and ob-
tained the strong consistency of the distributed algorithm. The cooperative excitation
condition can reveal the joint effect of multiple sensors. Many interesting problems
deserve to be further investigated, for example, the distributed order estimation prob-
lem of the autoregressive moving average model with exogenous inputs, the recursive
distributed algorithm for the order estimation problem.
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