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Abstract. In this paper, we study the distributed identification problem of dynamic systems
described by stochastic regression models with colored noise. To deal with challenges brought by
the colored noise, we provide estimates for the unknown noise over a previous time period, and
incorporate them with observed signals to construct extended regression vectors. Based on this,
we develop a distributed extended stochastic gradient algorithm to estimate unknown parameter
matrices by integrating the diffusion strategy of extended regression vectors with the consensus
strategy of neighbors’ estimates. We introduce cooperative nonpersistent excitation conditions to
reflect the temporal and spatial union information condition, under which the almost sure convergence
of the proposed distributed algorithm is established. Our results are obtained without assuming the
independence, stationarity or persistent excitation conditions for the regressors and the Gaussian
property for the system noises. Finally, numerical results are provided to verify the effectiveness of
our proposed algorithm.
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1. Introduction. Over the last decade, distributed identification algorithms
over sensor networks have attracted considerable interests. Compared with central-
ized algorithms with a fusion center, all the sensors in distributed ones cooperatively
accomplish the identification task by communicating with theirs local neighbors. Dis-
tributed algorithms have advantages of robustness, saving communication and compu-
tational costs, and protecting privacy and, therefore, are applied in many practical sce-
narios including resource allocation, consensus seeking, and target tracking [28, 22, 16].

In the current literature, there are several local information fusion strategies to
design the distributed adaptive estimation and filtering algorithms, where consen-
sus [4, 23, 5, 25] and diffusion [24, 4, 9, 1] strategies are commonly used. Based on
these strategies, different distributed estimation and filtering algorithms are designed
for both time-invariant and time-varying systems, and corresponding analysis for the

*Received by the editors March 4, 2024; accepted for publication (in revised form) October 7,
2024; published electronically February 18, 2025.
https://doi.org/10.1137/24M1643621
Funding: This work was supported by the Natural Science Foundation of China under grants
T2293772 and U21B6001, and by the Strategic Priority Research Program of the Chinese Academy
of Sciences under grant XDA27030201.
TCollege of Artificial Intelligence, Nankai University, Tianjin, People’s Republic of China (gandie@
amss.ac.cn).
fKey Laboratory of Systems and Control, Academy of Mathematics and Systems Science, Chi-
nese Academy of Sciences, and School of Mathematical Sciences, University of Chinese Academy of
Sciences, Beijing, 100190, People’s Republic of China (yanren2021@amss.ac.cn, chenshuning@amss.
ac.cn).
§Corresponding author. Key Laboratory of Systems and Control, Academy of Mathematics and
Systems Science, Chinese Academy of Sciences, and School of Mathematical Sciences, University of
Chinese Academy of Sciences, Beijing 100190, People’s Republic of China (lzx@amss.ac.cn).

650

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/24M1643621
mailto:gandie@amss.ac.cn
mailto:gandie@amss.ac.cn
mailto:yanren2021@amss.ac.cn
mailto:chenshuning@amss.ac.cn
mailto:chenshuning@amss.ac.cn
mailto:lzx@amss.ac.cn

Downloaded 02/18/25 to 60.29.153.42 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

DISTRIBUTED EXTENDED SG ALGORITHM 651

performance of distributed algorithms is also investigated under some signal condi-
tions. For the deterministic signals, Javed, Poveda, and Chen in [17] studied the
stability of the cooperative gradient algorithm by assuming regression vectors to sat-
isfy a cooperative persistent excitation (PE) condition. Chen et al. in [7] investigated
the convergence of a distributed adaptive identification algorithm under a cooperative
PE condition. Vahidpour et al. in [24] analyzed the mean-square steady-state perfor-
mance of a partial diffusion Kalman filtering algorithm under the ergodicity condition
of deterministic observation matrices.

The external interface is prevalent in practical situations, and some research has
been conducted for the distributed identification problem of dynamic systems subject
to noises. For example, Bertrand, Moonen, and Sayed in [4] studied the mean-square
performance of a diffusion least squares (LS) algorithm with the independent and
stationary regression vectors. Schizas, Mateos, and Giannakis in [23] established
the stability of the consensus-based least mean squares (LMS) for the strictly sta-
tionary and ergodic regression vectors. Barani, Savadi, and Yazdi in [2] presented
the convergence analysis of the diffusion stochastic gradient descent algorithm for
independent and identically distributed (i.i.d.) signals. We see that most existing
results on theoretical analysis of distributed estimation algorithms of dynamic sto-
chastic systems are obtained by relying on independence or stationarity assumptions
of regression vectors, due to mathematical challenges involved in analyzing product
of random matrices. Such statistical assumptions are too stringent to be satisfied
since the practical regression signals are often correlated caused by multipath effect
or feedback. In order to remove such assumptions on regression signals, some efforts
have been made, e.g., [11] for distributed stochastic gradient (SG) algorithms, [26] for
LS-based distributed identification algorithms, [9, 10] for distributed order estimation
and distributed sparse identification problems. We have added a specific expression
of noise through the backward shift operator in line 162 In these studies, the system
noises are often assumed to be a martingale difference sequence. However, in many
practical applications such as target position tracking and speech signal extracting, it
is not appropriate to model them as white noises because of the colored property of
measurement noises [30]. Moreover, when collecting observed signals from spatially
distributed sensors, the noise model is more complicated due to the sensors’ environ-
ment [29]. The colored noise is often modeled as an autoregressive process in signal
processing and statistical modeling, including the well-known autoregressive moving
average system with exogenous inputs (ARMAX) model. So far very few investiga-
tions focus on the distributed estimation problems of dynamic systems with colored
measurement noises, e.g., [20, 27, 29], whereas the conditions are imposed on regres-
sion signals such as requiring the coefficient matrices to be deterministic or assuming
the covariance matrix of regressors to be time invariant. This motivates us to study
the distributed identification problem for stochastic models with colored noise under
general signal conditions.

We note that the SG algorithm is widely used to estimate time-invariant parame-
ters in the fields of system identification and adaptive control due to its simplicity and
low computational complexity, and the SG-based distributed algorithms attract con-
siderable attention (cf. [5, 13]). In this paper, we develop a distributed identification
algorithm based on the SG algorithm with colored noise to estimate unknown time-
invariant parameters, and analyze performance of the proposed distributed algorithm.
Compared with the case where the noise is a martingale difference sequence, in the
case of colored noise, we need to identify unknown parameters in both the system and
noise model simultaneously. To deal with this issue, we provide estimates of the noise
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over a past period of time, and incorporate them with the observed signals to build
extended regression vectors. Based on this, we propose a novel distributed extended
SG algorithm where the extended regression vectors are diffused over sensor networks;
the consensus strategy of neighbors’ estimates is also employed. We introduce a coop-
erative non-PE condition, a temporal and spatial union information condition on the
stochastic regression vectors, to reflect the cooperative effect of multiple sensors. The
challenges in theoretical analysis lie in analyzing properties of the product of noninde-
pendent and nonstationary random matrices. By virtue of the powerful mathematical
tools such as the martingale theory, strictly positive-real theory, and algebraic graph
theory, we establish almost sure convergence of the proposed algorithm under the
cooperative excitation condition. Different from existing results in the literature, e.g.,
[4, 23, 2], our theoretical results are obtained without relying on the independence or
stationarity assumptions of the regression vector, which makes our theory applicable
to stochastic feedback systems.

The rest of the paper is organized as follows. In section 2, we give some prelim-
inaries on matrices, graphs, and stochastic processes. In section 3, we introduce the
system model and the distributed extended SG algorithm. In section 4, we present
the convergence results of the distributed algorithm proposed in this paper, with their
proofs given in section 5. In section 6, we provide a numerical example to verify the
effectiveness of the proposed algorithm. The concluding remarks are made in section 7.

2. Preliminaries. In this section, we introduce some notations and preliminary
results on matrices, graphs, and stochastic processes.

2.1. Matrix theory. Let RP and RP*? represent the set of p-dimensional real
column vectors and p X g-dimensional real matrices, respectively. For a matrix A €
RP¥4_ || A|| refers to its Euclidean norm, i.e., [|[A| = \/Amax(AAT), where ()T rep-
resents the transpose operator and Apax(+) denotes the maximum eigenvalue of the
matrix. Similarly, the minimum eigenvalue of a matrix is denoted as Apin(-). The
condition number of an invertible matrix A is defined as ||A|| - [|[A™||. For two sym-
metric matrices A and B, A> B (A> B, A< B, A < B) means that A— B is a positive
semidefinite (positive definite, negative semidefinite, negative definite) matrix. The
p-dimensional square identity matrix is denoted by I,. Tr(-) denotes the trace op-
erator of a square matrix. For [ matrices Aq,---,A; with the same dimension p X g,
the notation col{Ay,---,A;} € RP'X? means stacking | matrices into a column form.
The notation diag{A;,---,4;} € RP"*% means constructing a block diagonal matrix
with Aq,---, A; as diagonal elements. The Kronecker product of matrix A and B is
denoted by A® B. For two positive scalar sequences {ay} and {by}, ar = O(by) means
there exists a positive constant C' independent of k£ such that ay < Cby holds for any
k € N with N being the set of natural numbers. A matrix is said to be nonnegative if
all of its elements are nonnegative.

2.2. Graph theory. Consider a graph G = (V,&,A) over n sensors, where
V ={1,2,---,n} is the sensor set, the edge set £ refers to the communication be-
tween sensors, and A is the adjacency matrix. Denote the element in the ith row
and jth column of A as a;;. If sensor j can receive information from sensor %, then
(4,7) € € and a;; > 0, otherwise (i,j) ¢ £ and a;; =0. In this paper, we assume that
the topology of the sensor network is undirected, that is, a;; > 0 if and only if a;; > 0.
The neighbor set of sensor i is defined as A; = {j|(j,7) € £}. A path of graph G with
length h is a sequence of edges (ng,n1), (n1,n2), -+, (np—1,n5) belonging to & with
{no,n1,n2,...,mp} CV. A graph is said to be connected if there exists at least one
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path for any two nodes. The diameter of a graph is defined as the maximum value
of the shortest path length between any two nodes, which is denoted by D(G). The
matrix A is nonnegative, and it is called row stochastic if Z?Zl a;; =1 holds for all
i€{1,2,...,n}. Also, if > ; a;; =1 holds for all j € {1,2,...,n}, then A is column
stochastic. A matrix is called doubly stochastic if it is both row and column stochastic.
For convenience of analysis, the adjacency matrix considered in this paper is symmet-
ric and doubly stochastic. Then the Laplacian matrix of the graph can be written as
L=1, — A. We first give a lemma about the properties of a Laplacian matrix.

LEMMA 2.1 (see [18]). The Laplacian matriz L has at least one zero eigenvalue,
with other eigenvalues positive and less than or equal to 2. Moreover, if the graph G
is connected, then L has only one zero eigenvalue.

2.3. Stochstic process. Let (2,.%,P) be a probability space, and {F, k >
0} be a nondecreasing family of sub-c-algebras of .%. For the adapted sequence
{Xk, #1172, on the probability space (Q2,.#,P), {X;} is a martingale difference se-
quence if it satisfies E|X};| < oo and E (Xy|-F—1) = 0 almost surely (a.s.) Vk > 0,
where E(-) and E(+]-) denote the expectation operator and conditional mathematical
expectation, respectively. For a martingale difference sequence, we have the following
martingale estimation theorem and martingale convergence theorem.

LEMMA 2.2 (martingale estimation theorem [6]). Let { Xy, %1} be a matriz mar-
tingale difference sequence and { My, %1} be an adapted sequence of random matrices.
If sup, E (|| Xg41]|“|-Zk) < 00 a.s. for some a € (0,2], then as t — 0o

t
ZMkaH =0 (st(a) log=*" (s§ () + e)) a.s. Vn>0,
k=0
where sy(a) = (Yo | Mil*) .

LEMMA 2.3 (martingale convergence theorem [6]). Let { Xy, #r} be a martingale
difference sequence. Then as t— 0o, & = 22:1 X converges on the set S, where

S:{i]EQXngZkl) <oo}.

k=1
3. Problem formulation.

3.1. System description. This paper considers a sensor network consisting of
n sensors. For each sensor i, we assume that its observation model is described by
the following stochastic regression model:

(3.1) Yip1 =00 00" + €hpr, k20,

where yi denotes the mi-dimensional measurement signal, qﬁ%i is the mo-dimensional
stochastic regression vector of sensor ¢ at the time instant k, 6y € R™2*™1 ig the
unknown system parameter matrix, {€}} is the mi-dimensional colored noise which
is driven by a martingale difference sequence {wi, #;}, i.e., for any k > 1, E(w} |
F—1) =0 holds, and

(3:2) €1 = Wit1 + Cr0p + -+ Crwh oy,

where {Z;} is a family of nondecreasing o-algebras, wi = 0 if k < 0, and C; €
RmMixmi(5=1,...,r) are unknown matrices.
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For convenience of expression, we denote

(3.3) C(2)=In, +Ciz+Coz®+ - +Cp2"
with z being the shift-back operator, i.e., zx; = x;_1; then we have e}'cﬂ — C(Z)wlz'chl.
Denote
o7 =101, C,...,C] e R™M*™
(3.4) .

er =1 W) (Wisg) )T ER™

with m = mg + myr. Then, system (3.1) can be equivalently transformed into the
following expression:

(3.5) Yhp1 = QTSQ%i =+ W;-H-p k>0.

In this paper, our purpose is to design distributed identification algorithms for each
sensor to estimate the unknown parameter matrix € by using the information of itself
and neighboring sensors.

The stochastic regression model (3.1) or (3.5), which includes the well-known
ARMAX model, is widely used in the field of adaptive control and statistical learning.
For distributed identification of such models, current research mainly focuses on the
case of white noise [11, 26], and the algorithms and theoretical analysis for systems
with colored noise are very few. However, in practical scenarios such as target position
tracking and speech signal extraction, it may be more appropriate to characterize the
external interference as colored noises (cf. [30]). This motivates us to study the
distributed identification problem of stochastic regression models with colored noise.

3.2. Distributed extended SG algorithm. Differently from the model in [11]
where all elements in @2’1 are known, the stochastic regression vector @2” in (34) is
not completely available since it contains unknown noises. Thus, the algorithm in [11]
cannot be used directly. To solve this problem, we give the following estimates for
unknown noises w,@ ... ,w,i_r+1 in apg’l:

(36) wz:yz_(z—l)T@i—l’ t:k—7‘+2,7k‘+1,

where é}:fl and !, are the estimates of unknown coefficients and the extended regres-
sion vector of sensor 7 at the time instant t —1 (k—r+2 <t < k+1) defined as follows:

(3.7) G =opi)T, @ )T, (@) T)T

Based on this, we replace unknown noises wi,...,w};_r 41 in the regression vector
wg’i with the corresponding estimates. Thus, we propose the following distributed
extended SG algorithm for the stochastic regression model (3.5) with colored noise to
estimate the unknown parameter matrix #. The details can be found in Algorithm 3.1.

In Algorithm 3.1, the term x; can be regarded as the adaptive weighting coefficient
between the estimates of the sensor i and its neighbors, and the term 1/r% can be
regarded as an adaptive gain of the innovation. Here, we consider a two time-scale
scheme with communication rate ¢ > 1 in Step 1 of Algorithm 3.1, i.e., each sensor
diffuses the norm of the extended regression vector with its neighbors for @Q > 1
times to form the term x}c The communication rate @ is important to guarantee
convergence of the product of random matrices (see Theorem 17 in [11] for details of
the proof), and this diffusion strategy is widely used in the design of the distributed
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Algorithm 3.1. Distributed extended SG algorithm.
Input: the measurement {y} }x>1, stochastic regression vectors {¢2’i}k20, i€
{1,2,...,n}, the step sizes u,v.
Output: estimates {0} }r>1, 7€ {1,2,...,n}. N
Intialization: For each sensor i € {1,...,n}, begin with any initial estimates 6 €
R =1, &5 =0, <0, oh=[(¢5")7,0,...,0)".
——

for each time instant £k =0,1,2,... do
for each sensor i=1,2,...,n do
Step 1. Diffuse the norm of extended regression vector:
. 712
Let a},(0) = 125
for ¢g=1,2,...,Q with @ >1 do
7(q) = Zje_/\fi aijry(q—1).
end for
Let 2t =i (Q). N
Step 2. Update the estimate 0;  :

sh=ak Y au(b —6}),
le/\/i
i i @4 i iNT jyi i j
O 1 =01 + ﬂr*f ((Z/k+1)T - (Sﬁk)T‘gk) —pv Z aij (2, — 24),
k JEN;

Extended SG algorithm Consensus-based item

where p and v are two step sizes lying in (0,1).
Step 3. Update the extended regression vector ¢ ., and r}_:

(’Dz:yz*(Ai—l)T@i—h t:k+277‘a"',k+17
. 0,i N s
@2-&-1 = [(¢ki1)T7 (w2+1)T7 st (w12<:+2—7')T}T7
Thpr =T 4 9k 1.

end for
end for

algorithms; see, e.g., [3, 12, 15, 21, 19]. In Step 2, the update of estimates consists
of two parts: the first part is the extended SG algorithm which tries to minimize the
prediction error, while the second part uv - .y, aij (21 — 2]) can be regarded as the
result of minimizing the weighted distance between the estimates of the sensor ¢ and
its neighbors. In Step 3, i =14 37, ||¢i||2, which increases with k, can eliminate
the influence of noise on the estimation error.

For convenience of analysis, we introduce the following notations:

Y=y, Ui] (m1 X n),

®) = diag{npg’l, .. .,npg’"} (mn x n),

&, = diag{pp,..., o8} (mn x n),

Wi =[wp,...,wi] (m1 X n),

© =col{b,...,6} (mn x m1),
NG

n
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O, =col{h},...,0} (mn x my),
O =col{f}.,....00}, 0. =60 — 0L (mn x my),
Ry, = diag{r},...,r7'} (n xn),
A= i’kR,:hI’g (mn x mn),
2 =L®I,,L is the Laplacian matrix (mn x mn),
X4(Q) = diag{z}(Q). .., a7 (Q)} (nx n),
Gy=A, +vZ(X(Q)®1I1,)Z (mn x mn).

By the notations above, we can rewrite the system model (3.5) and the distributed
extended SG algorithm (i.e., Algorithm 3.1) into the following matrix form:

(3.8) Y1 =078 + Wi,
(3.9) Q)11 =0 +u® RN (Yi, — 8] 0)) — wwZ(Xi(Q) @ I,,) L0y

Denote the difference between the regressors cpg’i and i as

(3.10) o= col{0,...,0,C, .. Chir =0k — o) e R™,

mo

where (} represents the difference between noise w, and its estimate &}, i.e.,

(3.11) Gi=0k —wi =9k — (Oh_1) Py —wh ER™.
Let ¢, = [C},...,¢P] € R™>™ and \Ili = diag{wlg’l,..., 2"} € R™M"*"_ Then, we
can straightly derive that
(3.12) T =Py — B,
AT
(3.13) Ck:Yk'_@k:—lékfl _Wk.

By (3.8), (3.9), and (3.12), we have

Opi1 = O + u®L R (B ©+ WL, —3T0,) — L (X4(Q) @ 1,,).260,
— O + @R (@100 @+ W, — 870,)— w2 (X,(Q) ® I,,) L0
= O+ @ RN (21O — UL O + W) — i Z(X(Q) © 1)) L6

Hence, by the fact £© =0, we can obtain the following estimation error equation:
~ S = —1q¢T —1yxT

(3.14) O = —pGr)O, +pu® R, Y, © —u® RW; .

Recursively define the state transition matrix II(k,j) as follows:

(315) H(k+17.7):(Imn_,UGk)H(kvj)v H(]v]):Imn

4. The main results. Before establishing the convergence results of Algorithm
3.1, we need to introduce some assumptions.
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4.1. Assumptions.
Assumption 4.1. The graph G of the sensor network is connected.

Remark 4.1. Denote A = A--- A= [a(»Q)], ie., a'? is the ith row, jth column
N—— v v

Q
entry of the matrix A®. By the theory of the product of stochastic matrices, if
Assumption 4.1 is satisfied and @ is no less than the diameter of the graph, then we
have aiJQ) >0 for all ¢ and j.

To deal with the effect of the colored noise, we first introduce the concept of
strictly positive-real (SPR).

DEFINITION 4.1. A matriz H(2) of rational functions with real coefficients is
called SPR if H(z) has no poles in |z| <1 and
H(e?) 4+ HT (—e?*) >0 VA€ [0,27].

A common property of SPR is listed in the lemma below.

LEMMA 4.2 (see [6]). Let H(z) be a matriz of rational functions with real coeffi-
cients. The sequences {uy} and {vg} are connected by the transfer matriz H(z), i.e.,
v = H(z)ug, k> 0. If H(2) is SPR, then there exists a constant ¢ >0 such that

t t
(4.1) Sl > ¢S (unl? + ogl?) 2> 0.
k=0 k=0
Assumption 4.2. The transfer matrix C(z) — W[ml is SPR, where C(z) is

defined in (3.3).

Remark 4.2. The SPR property guarantees stability of the noise part in a cer-
tain sense [6, 8], which is widely used in studying identification and adaptive control
problems and plays a key role in dealing with colored noise, as shown by Lemma 4.6
in the next section.

We also need the following assumption on the noise for subsequent theoretical
analysis.

Assumption 4.3. Assume that {Wy, %} is a martingale difference sequence,
where F) = O’{QD;-,W;», j <k, i=1,...,n}, and there exists a positive constant ¢
(which may depend on sample w) such that sup, E(||W 1 1||?|%) < co holds.

In addition, we need to introduce an excitation condition on the regression vector
¢}, for convergence analysis.

Assumption 4.4 (cooperative nonpersistent excitation condition I). There exist
two positive constants N and Ky such that for k > Ky, the inequality

Arr]fa)‘x 1
(4.2) NCE < N (log(||Rx[)))*  as.

min

holds, where )\fr’fgx and /\gfi)n represent the maximum and minimum eigenvalues of the

matrix 21, + 3", Z?zl @’ (¢%)", respectively, and || Ry|| — oo as k — oo.

Remark 4.3. In fact, Assumption 4.4 is a temporal and spatial union information
condition on the regression vectors. It is clear that Assumption 4.4 is much weaker
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than the classical PE condition in the multiple sensor case [7] and includes many
typical cases such as the i.i.d. signals and the stationary ergodic signals. Moreover,
Assumption 4.4 illustrates the cooperative effect of multiple sensors in the sense that
the whole sensor network can cooperatively finish the estimation task, even if any
individual sensor cannot due to lack of necessary information; see the simulation
results in section 6.

A natural problem is to ask Whether Assumption 4.4 imposed on ¢} can be
transformed into conditions on <pk . Denote

k

0, 0,i)2

Tkzzl“‘Z”‘le” )
j=1

0 _ 1 0,1 0,n
R, =diag{r,",...,r."},

n k
n i i
)‘r(r?afc) = Amax EIm + ZZ‘P?’ (902' )T )

i=1 =1
n n k
0.k 0, 0
)‘Enin) = Amin Elm“rzz(pj 1(30] Z)T
i=1j=1

Then, we introduce the following excitation condition on {¢Z’i} by using Rg, )\g?élf()7

and )\(O’k)

min *
Assumption 4.5 (cooperative nonpersistent excitation condition II). There exist
two positive constants N and Ky such that for k > Ky, the inequality

)\(ka)

. 1
(4.3) el <N (log(1RYID) T as.

min

holds, and || R} || — oo as k — oo.

. 0.4 . ..
For the regression vectors ¢,”*, we define some notations similar to the extended
regressors ¢j,:

7J|

Z @ ||30;c

A :@2(1{2)* 30" e grmnxmn,

X0(Q) = diag{a{"(Q). ....af"™(Q)} e RV,
G =A + v L(X0Q)® I,,).L e R™¥m,

eR,

Also, we define the matrix TI°(k, j) in a similar way as II(k, ), i.e.,
(4.4) I(k +1,5) = (Inn = GO (K, 5), T1°(7,§) = Lonn

LEMMA 4.3. [11]. Suppose that Assumption 4.1 is satisfied. If 4> 0,v >0, and
w(l+4v) <1, then we have

OS,UGk SImn

From Lemma 4.3, we have ||[TI(k,7)|| < 1. Similarly, we can prove that ||TI°(k,
<1
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4.2. Convergence results. To analyze the convergence of Algorithm 3.1, we
first introduce the following basic lemmas.

LEMMA 4.4 (see [14]). Suppose that {di}72, is a sequence of nonnegative real
numbers. Then, we have the following results:

o0

Z—’;<oo Va>1,
— Dy

o0

Z =o00 iff lim Dy =00
k—o0
k=
where Dy =1+ ZZ=1 dy,

LEMMA 4.5 (Kronecker lemma [6]). Let ay,a2,... and 0 < by < by < --- be real
sequences such that {by} increases to infinity as k — oo. If > po Z—: converges, then
limy_s o0 % 22:1 a =0.

Compared with the convergence analysis in [11], we see that the main challenge

T
lies in analyzing the property of u® ;CRgllIlC © in the error equation (3.14). To deal
with this term, by the definition of ;" in (3.10), we first establish the boundedness
of {’IY(ZJ 0GRy Cg+1)} using the SPR property and martingale theory in the
following lemma.

LEMMA 4.6. If step sizes p,v in Algorithm 3.1 satisfy p(1 + 4v) < 1, then un-

~T ~
der Assumptions 4.1, 4.2, and 4.3, Tr(®, O) and Tr (Z?:o Cj+1Rj_1CJT+1) are a.s.
bounded.

The proof of Lemma 4.6 is very complicated, and we present it in subsection 5.1.
By the definition of 1Ili7 ¢, and R,;l and Lemma 4.6, we have

o r—1Tr (C}i—j(C]i—j)T)

n(Swime’) Yy S

1=1 k=0 j=0

" S (GG
(4.5) =D> D) <>,

i=1 k=0 j=0 Tk—j—1

T
which gives the boundedness property of Tr (EZOZO lIliRgl\Ili )
Remark 4.4. We note that if Assumption 4.3 is relaxed to the weaker noise

condition

supEE (|| Ry W 173 ) < o0

with € € (0,1), then under Assumptions 4.1 and 4.2, we see that Lemma 4.6 still holds
by Lemma 4.4 and following the proof line of Lemma 4.6.

In the following, we will provide a sufficient condition for the convergence of the
distributed extended SG algorithm.

THEOREM 4.7. Suppose that the condition number of Ry, is bounded (i.e., there ezx-
ists a positive constant v which may depend on the sample w such that sup, maxi<i<p
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ri /mini<;<n, i <v). Under the conditions of Lemma 4.6, if TL(k,0) == 0 a.s.,

then ©), —— O a.s. for any initial value O,.
k—o0

Proof. By (3.14), it can be recursively derived that

k
N B T
O =11(k +1,0)00 +MZH(k+ Lj+ 1)(I’jR;1‘I’§ ©
=0
k
(4.6) THD Tk L+ @R W,
=0

Since II(k,0) k—> 0, we only need to prove that the last two terms on the right
—00

side of the above equation will converge to zero. Denote (II(-,-))T as IT(-,-); then
for any k,

mn = Tr<n ke, k)T (k k))

k—1
Tr( [TL(k. -+ DI (1, + 1) — Tk )T (k.5

7=0
k—1
(ZHMH)[I H(j+1,j>~HT<j+1,j>}HT<k,j+1>)
7=0
k—1
> Tf ZH(kJ +1) {MG.? + 4G (Inn — MGJ):| I (k,j + 1))

7=0

1

(K, j+ 1)pA; 7 (k,j + 1)

<.
(=)

_1
> p ”H(kvj +1)®,R; *|*.
=0
Then we have

k—1
(4.7) > Tk, j+ 1)@, R, B2 <
j=0

mn

From (4.5) and (4.7), it can be obtained by Hélder’s inequality that

k

T
S OM(k+ 1,5+ 1)®,R; WS
j=0

[N
[N

k k
. _1 _1 _ T
<| > Mtk +)2,R; | > IR
j=M+1 j=M+1
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M
T
+HID Ik +1,5+1)®,R; S
=0

k 2 M
mn T T
< T D] iR | +|D (k41,5 +1)®,;R; WS
H j=M+1 j=0

— 0, as k— oo and then M — cc.

Then according to the sufficiency of Theorem 14 in [11], we have

k
S T(k+1,5+1)®R; W], —0, as k— oo.
§=0
This completes the proof of this theorem. 0
According to [11], we know that if the cooperative non-PE condition I (i.e., As-

sumption 4.4) on the estimated regression vector {pi} is satisfied, then we have
II(k,0) - 0 under some mild conditions. Furthermore, by Theorem 4.7, con-

vergence of ‘the distributed extended SG algorithm for the model (3.5) with colored
noise can be obtained. It is natural to ask whether convergence of the algorithm can
be obtained under the cooperative excitation condition on gpk , i.e., Assumption 4.5.
To answer this question, we first provide a lemma to guarantee boundedness of the
condition number of R.

LEMMA 4.8. Under conditions of Lemma 4.6, if | Ry o0 and the condition
— 00
number of Rg is bounded, then the condition number of Ry is bounded.

Proof. By (4.5) we have for any i € {1,...,n}

(:z
(@3) ZW——ZW“ DR YR R < .

7j=1 ] 7j=1

By the condition that the condition number of Rk is bounded for all k& > 0, we
see that there exists a posmve constant 7 such that | R ||[|(RY) || < ~o. Combining
this with the condition ||Ry|| — oo, we have ||(R})™!| = 0, which implies that

) ) —00
for any i, rg’l —— 00. We now show that r;, —— 0o by reduction to absurdity.
k—o0 k—o0

According to the definition of 7, we see that rj is nondecreasing with k. Thus, the
sequence 7} has a limit. If rj — ¢ < oo, then by (4.8), we have Y 7 H1/)J<ZH2 < o0.
Hence from (3.10) we can get

k k
(4.9) it = =2 (@) e Y P
j=1

1
2

k k
Sk [ DI |+ DI < oo
j=1 j=1

which contradicts ’I“k " — 00. Hence for any i, we have ri — co. Then by (4.8) and

k GCii2

=1T\L¢j I 0. For any i € {1,...,n}, by the definition of
k

Lemma 4.5, we have
k—o0

7}, we can derive that
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X ()

1
Tk

(410) ’ o o RO P (Zf_l ||_w§ﬂ"||2> :

1 ¥
Tk Tk

Hence by (4.10), for any i, we have

) . & ) y &
(4.11) i ﬁ . Ty — 223‘:1(@;‘)T¢§ ’ +Zj:1 H“/’;: 2H2 1
' k—o0 ’I“]ic k—o0 ’I“]i ’

Then we can obtain the following inequalities:

.
’L

R n
(4.12) lim sup | ISH =limsu %ﬂﬁoﬁ <limsup 0 — < l1msupz i)kl. =n,
k—oo || Rpll  k—oo max; rk k—oo T} k—oo 15Ty
IR min e’ oy
(4.13) limsup 0 = limsup ;’“ <limsup ,, <lim supz Lz =n,
k—o0 H(R) 1” k—oo mlnz ’I’k k—oc0 Tk k—o0 i—1 ’l”k

where i/ =i/ (k) = argmax; i € {1,2,...,n}, i =i (k) = argmin; r} € {1,2,...,n}.
Hence we have

1Rl (IR

IR (R

)

(4.14) sup IR (Re) ™ = SUp IR (R~ -

which completes the proof of this lemma. ]

THEOREM 4.9. Under the conditions of Lemma 4.6, if the condition number of
R) is bounded, then as k — oo, TI(k,0) — 0 if and only if TI°(k,0) — 0.

The detailed proof of Theorem 4.9 is given in subsection 5.2. It provides a neces-
sary and sufficient condition for II(k,0) — 0, and contributes to the following theorem
for convergence of the algorithm under cooperative non-PE condition II (i.e., Assump-
tion 4.5).

THEOREM 4.10. Suppose that there exist iy,iy € {1,...,n} such that ry"* =
O(’I“g “1) O i —> oco. Under the conditions of Theorem 4. 9 if Assumption 4 5 is

further satzsﬁed and the communication rate @ > D(G), then we have O, k—> 0 a.s..
— 00

Proof. Using Theorem 17 in [11], we have II°(k,0) - 0, which implies that
II(k,0) = 0 by Theorem 4.9. Hence by Theorem 4.7, we can obtain ©;, — @, k —

00 a.s., Wthh completes the proof. ]
5. Proofs of Lemma 4.6 and Theorem 4.9.

5.1. Proof of Lemma 4.6.
Proof. By (3.5)-(3.7) and the definition ¢} in (3.11), we have

C (=) = C2)(yh — (1) @ho1 — wh)
=y — C(2)wf, = (0,-1)"pho1 + (C(2) = T ) (Wi, — (0 -1) "¢k 1)
=03 9pL 1 — (Gim1) phms + Crfiy + o+ O,
(5.1) = 9T<Pfc—1 - (é/ic—l)Tsﬁ?cq = (52—1)T<P7§—1~
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By the assumption that the transfer matrix C'(z) — MIWH is SPR and Lemma

4.2, we see that there exists a positive constant ¢ > 0 such that

k

i i ~ i 1+4v)(1+c¢
62 émZ(g)T{(e gy - MO s i
j=1
Let by = 7", - P > 0. Since 7% is nondecreasing with k, we can obtain that

-1

n a}; ak ai
+1 +1
bk+1 — b= E — = < E
Tk Tk: 1

—2MZ - (G [(@)Twz—“(”“’;)(”ckéﬂ})

_ 1+4v)(1+¢ _
(5.3) =2uTr (@k ®LR; ¢l — %CHIR,c 1c{+1) .

By (3.9) and (3.13), we have
Ori1 =0y + Mq’kR;;l(CZH + Werl) -~ wZ(X(Q)®1,)ZL0y.

By (:)k-s—l =0 - ék+1 and .£© =0, we can derive the following recursive estimation
error equation:

(5.4) Q)11 = (I, — v L (X1(Q) ® Im)j)(:)k — u®LR; (Ck+1 n Wk+1)
By (5.4), we have
Tr(éf—i-l(:)k-&-l) + bt
= T2 (8) (L — 2 (X(Q) & 1,,)2) "8,
918 (T — 0 L (X4(Q) ® 1) L)@, RN (T + W)
12 (G + W) Ry, @@L R, (G + W{H)) 4 bpst

_ Tr(éf (Ln — v 2(X4(Q) @ Im)g)@k)

~T _ 1+4v)(1+c¢ _
— Tr(?u {@k o,.R,; ' N(Q)()Ck+1Rkl} Cg+1)

- Tr( (1+40)(1+&)Cpu Ry Ck+1) Tr(2u@k<I>kR W,M)

+ T (2208, L(X1(Q) © 1) L8Ry (CLoy + W)
T (12 By «I)Ttka_ CLi) + T (1 Wi Ry T @R WT, )
n Tr(?u ¢ Ry 1q>”;f<1>kR,;1Wk+1) b

(55) EJ—Jy—Jz—Jy+Js+ Js+ Jr + Js + by

In the following, we analyze the right-hand side of (5.5) term by term.
By Lemma 2.1 and the definition of X(Q), we have

[ZAls
(5.6) 1£(X1(Q) & L) 2] <4 s T2EL <4
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Since for any A > 0 and any X,Y with proper dimensions, the inequalities
2Tr(XTAY) < Tr(XTAX) + Tr(YTAY) and Tr(XTAX) < ||A|Tr(XTX) hold. By
these two inequalities and (5.6), we have

Js < pPv Tr(Qé:.,?(Xk(Q) @ 1,,).L0y
+ i Ry L (X1 (Q) ® 1) LRy Gy
+ Wi B2 (X4(Q) @ ) L 0By W, )

<y Tr(gé,fg(xk(@) ®1,,).20,
A Ry BT B R T+ AW Ry T BRI W ).
Then we can obtain the following inequality:
T+ Js 4 Jo 4 Jr < Tr(éf [(Tn — .2 (X1(Q) ® I,n).2)°
+ 2202 (X1(Q) © In) £ Oy
+ (14 40) ¢ Ry LB R, G
(5.7) +2(1 +4y)Wk+1R,;1<I>{<I>kR,;1W£H).
From p(1+4v) <1 and (5.6), we have
(Tpn — .2 (X1(Q) @ 1,,).L)" + 2u*v.L(X4(Q) @ 1)L < L.
Then
Tf(MQ(l + 4V)Ck+1R1:1‘I’£‘I’kR;1C£+1) —J3
=T = g2 (1+ )G B (1 - RO @R R
(5.8) - (1 +4V)5Ck+1RI;1CZ+1)'

On the other hand, it is clear that

(5.9) IR, ®] &R, || = ‘

12 n|[2
ang {LEE 1Y) <y
Tk Tk

Hence I,, — R,Z%@fq)kR;% > 0. Then according to (5.8), we have
Tr (521 + 4G Ry @ @RS Gl ) — s

(5.10) <1+ 4u)aTr(ckHR,;1cf+l).
Combining (5.3), (5.5), (5.7) with (5.10), we obtain the following inequality:

~T ~

Tr (©411Ok41) +bess
~T ~ ~T
<Tr <®k O — 1 (1+4)eC; 4 Ry iy — 200, @4 RIW I,
+ (1 + AW R, '@ @R, ' W,
+2M2ck+1R;1¢£@kR;1W£+l) + by
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By the summation of both sides of the above inequality, it can be derived that

(5.11)

~T ~
Tr (@,M@kﬂ) b + (L +4v)e-Tr | Y ¢ R,
§=0

k
~T ~
<Tr (90 @0) +bo+ i1+ 40T [ S W, RTS8, RyWE,,
j=0
k o k
—2uTr [ > 0, ®;R;'W, | | +2°Tr | Y ¢ R '@ ®;R;'WT
j=0 §=0

Now let us estimate the last three terms of (5.11). By Lemma 2.2 and Assump-
tions 4.2 and 4.3, we can choose a small constant & € (0, 3) such that

k
(5.12) Z@ o, R;'W, || <mi |6, %,R;'WT,,
j=0 ]
5 1460 5 3430
~T _ 2 _ 2
=0 ZHGJ (I)J'leH =0 ZHQHleH ’
j=0 j=0

where the last equality holds by (5.1).
Notice {1 € Z and H<I>jT<I'jR;1H < 1. Applying Lemma 2.2 to the last term
of (5.11) yields

(5.13)
k
’Tr(ZC]HR ‘ol Ry WL )| <0 (|6 R e e, RIWT,
j=0 j=0
A 1+50
—15T —1 2
o[ (Xl B e @R
§=0
k %*F(;O k %“1’50
12 1112 112
=0 (Xl ky | |of 2,5 | =0 | X lic; k5|
j=0 j=0

Finally we estimate Tr(Z?:O WjHRj_l‘I)jT(I)jR 1WJTH) Note that

SE(@ B - [IW sl ~E (W, l?7) || 2 )<2COZH<1>R1H
T Sy il B
gzc()ZTr( 1<I>T<I>R‘)_2OZZ ] a.s.,
j=0

j=01:=1
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where Lemma 4.4 is used in the last inequality and cg is defined in Assumption 4.3.
Then by Lemma 2.3, we obtain the almost sure convergence of

k
DI R P (IW il = E(IW511%175)) -
j=0
Hence, we have

k k 2
To [ S WinR @@ Ry W | | <m | Y0 ||@ R WL
=0 =0

k
<mi 3@, (IW 5> =B (I1W507 | 7))
7=0

k
— 2
1Y @R E (W] | 7)

Jj=0
k 0o
_ 2 2 _
<y (| Y NRR P (W5l —E (IWal* 7)) + a0 1@, B2 ) < oo.
=0 =0

By (5.11), (5.12), (5.13), we see that there exists constant ¢’ such that for any
instant k, the inequality

k

~T ~ -
Tr (®k+1@k+1) +ber + 7 (L+4w)eTr [ Y ¢ R,
=0
. $+d0
(5.14) <O DI R P
=0

holds. By dg < % and by > 0 for all £ > 0, we complete the proof of this lemma by
(5.14). d

5.2. Proof of Theorem 4.9.

Proof. We first prove the necessity part of the theorem. By Lemma 23 (2) in [11],
we can see that TI(k,0) ——0 implies || Rl ——roo By (4.12) and ||Ry|| P
— 00 —00 —00

0o, we have | Rl o o Then by the proof of Lemma 4.8, we have for any 4,
. — 00
rj, — o0o. Thus from (4.11), it is clear that

k—o0
. N . 1 T
(615 Hmoup (R < Ji T (R (D)) = Jim 3 s =

and, similarly,

(5.16) 1i£nsup||R21(R2)ll <n.
—00
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Then by (4.5) and (5.15), we have

o0 _l o0 _l l _i
(5.17) S OIws(RY) 2= | ¥R, *RE (R)) 2| < 0.
k=0 k=0

By I°(k + 1,0) = (I, — pGr)°(k,0) + (G — pGo)TI°(k,0), we can obtain
the following equation:

k
I°(k+1,0) =TI(k +1,0) + > _T(k+1,j+1) (uG; — pGYJ) I°(j,0)
j=0
il T
:H(k+1,0)+uZH(k+17j+l)(tI»jRj_l@JT—tbg(R?)‘lfbg )Ho(j,O)
7=0
k
vy T(k+1,5+1)2([X;(Q) — XJ(Q)] ® In) ZTI°(5,0)
j=0
k T
=TI(k+1,0)+p > TI(k+1,j+1)®;R; 'S T1°(5,0)
j=0
k T
fuZH(kJrl,jJrl)\Ilg(R?)*l@? 11°(5,0)
j=0
b T T
Y M+ 15+ 1) (@R @) — @, ()~ @) ) I(j,0)
j=0
k
+ury Tk+1,j+1).2 ([X;(Q) — X}(Q)] @ I,) £1°(j,0)
=0

STI(k+1,0) + pHypy — pHy o + pHy s + pvHy 4.

In the following we prove that all the terms Hy, 1, Hy 2,Hy 3, Hy 4 converge to zero as
k — co. From (4.5), (4.7), |TI°(k,7)|| <1, and TI(k,0) —— 0, we have
—00

M
T
<D oMk +1,5+1)®,R;ES 110(5,0)
j=0

| Hp 1

I
[N

k 2 k 2
_1 1 T
+ S Hn(k,j+1)<1>jRj2 3 Hthpg H
J=M+1 j=M+1

— 0, as k— oo and then M — oo.

For Hy, o, by |TI°(k,7)|| <1 we have for any M >0
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mn >Tr [HoT(M, 0)II°(M, 0)]
>3 T [ (.01 (7,0)~ 11 (j+1,0)I1°(j+ 1,0)

j=M
o0

T [11°7(5,0) (Lo — TG + 1)1 +1,5) ) TG, 0)]

1
S

o

i
g

Tr :HOT(j,O) (Ln — (I = pGO) (L yny — pG2)) (5, 0)}

o

[ T, . .
Tr |11 (5,0) (4G +MG?(I—MG?))H°(J,0)]

j=M

(5.18) > i Tr [H‘)T(j,()) (LGY) II°(4, 0)}
j=M

(5.19) >MZ [ G oy~ |

Then by (5.17), (5.19), || TI(k, )| <1, and II(k,0) = 0, we can further obtain that
— 00

M
. _ T .
[ Hyoll < |[> TI(k+ 1,5+ 1) (R)) @) 11°(5,0)
7=0

1
2

[N

e wscrnt| S [ G o))~ |

J=M+1 j=M+1

— 0, as k— 0o and then M — oc.
From (4.7) and (5.19), it is clear that

T(+1,+1)8,R; * (R (R - R} (RY) ) (BY) 0 110(,0)

e

<
Il
o

[ Hy3ll =

Il
WE

-1 —1 1 1 -1 —1
H(k+1,j+1)<1>jRj2(Rj2(R2)2—R;(R§) 2)(R‘;) 92" 11°(j,0)

<.
I
o

2

2 e
NI Hn(k+1,j+1)<1>jRj2
j=M+1

1

k’ 2
X HHOT 0)®(RY) "2
j=M+1

— 0, as k— oo and then M — oo,

where (5.15) and (5.16) are used in the above inequality.
Finally, we will show H}, 4 —> 0. By Step 1 in Algorithm 3.1, it is clear that

(5.20) Z (@ ||90]||
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By (3.10), we have

0,1
[ s
ail o 0,1
J Ty

1T ¢\l ¢iT Ol | T 0,1
_ @ | Y (2 ¥j )
= ay I + 01 +
rt ) l 0,1
J j ’I"j r

aElQ)PllJ Jraz(l P2, Jra Pl3]
Then by (5.20), we have

X3(Q)

Q) —
0,l 0,l
R 2@ II%H2 Il 117 lesll® ey 112
_Z lag 0,1 ""7anl L 0,
Tj J Tj

{aﬁ?)P“ it ag?)Pw,j + i Prag,san) Pa + oyl Py + 0l P J}

nl

I Pllﬁz Il

Hence

Hyy= zn:ZH(k +1,5+ 1.2 ([diag {alP P, 0l Pa s | @ L) £11°(,0)

=1 j=0

+ Z Sk +1,j+1).2 ([aiag {atf Pz alP Pa }| @ 1) 210°(5,0)
1=1 j=0

+ iZH(k—H,j +1)2 ([diag {al P 0l Pia s }] @ 1) 211°(,0)
=1 j=0

£ Hya1 + Hyao + Hp a3

We will estimate Hy 41, Hi a2, Hp a3, respectively. For Hy 41, by the definition of
Py j, we have

|| H a1 |
n M
gZZHH(kJrl,jJr1)$<[diag{a1l)Pllj, ,al§ Pllj}]@@fm)fno(j,o)u
I=1 j=0
N
n (Q) (Q)
SOOIk, 41).2 | diagd || Bl | Del gl T
I=1j=M+1 " "
1
2
- af? a? 0
Z Z diag o FRNPPP :l Y p @Iy, | ZI10(4,0)
=1 j=M+1 J J
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n

< Zi H (k+1,j+1) ([diag{ag?)ﬂm, - 7a§ff>Pu,j}] ®Im) 2T, o)H

2

7=0
k

(55w v @o L)
=M+

1
n 2

s
Z > 4
I=1j=M+1

J

N
I”

Similarly to (5.18), we have

o0

(5.21) S (H(kz YL+ D)2 [X(Q) @ T, LI (k+1,5 + 1)) <o

j=M

Then by (4.8), we obtain ||Hj, 41]| — 0 as k — oo and then M — oco.
For Hj, 42, by the definition of Py ;, we have

0l Piz g P @ 1) 2110, 0)
2\ 3

)
nl_ AT
0,1 wj @I,

#l% ® I, | £T°(4,0)

J

< zn:f: |11 +1,5+1)2 ([ding {0 Py 0l Pay } | @ L ) 211°(,0)

N
Il
_
<.
Il
<

2

S Y r
2(3 % 3 Tr(HO (j,O)Z[Xj(Q)®Im]$H0(ja0))

I=1j=M+1 j j=M+1

Combining (5.17) with (5.18), we obtain || Hy 42]| = 0 as k — oo and then M — co.
For Hy, 43, by (5.15)—(5.16) and the definition of Pj3 j, we have

| H a3l

:Zn:zk:HH(k-{—Lj—Fl)ﬁ([diag{au Pigjyesald P | @1 ) 21100

=1 j=0

< ii |1+ 1,5+ 1.2 ([diag {aP Pas, ., alP Pras } | @1 ) 211G 0) |

1=1 j=0
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(Q) 2\ 2
a T
II(k+1,7+1).2 |diag 1/ ” .,U”—’l’goé- I,
I=1j=M+1 Tj

2\ 3
(@ o 0
diag 10150] Yo r%l’l ;" p @Iy | ZII(5,0)
J
<

n M
<S> me+ 1,5+ 02 ([diag {ofP Py 0P Py }| @ 1) 210G, 0)|
=1 j=0

+2f(z >

>

1=1 j=M+1

[NE

+2\/?z< > Tr( (k+1, g+1)$[Xj(Q)®Im]$HT(k+1,j+1)))

Jj=M+1

( > ﬂ(H°T<j7o>f[x?<cz>®1m15fn0(j,o>)> .

j=M+1

Hence by (5.18) and (5.21), we have ||Hy 43]] = 0 as k — oo and then M — oco. In
summary, we show that II(k,0) — 0, k — oo implies TI°(k,0) — 0, k — oc.

Let us move on the sufficiency. Conversely, if Ho(k, 0) = 0, then a similar argu-
ment leads to || Rjp|| — co. From the proof of the Lemma 4.8, we see that 7"2” — 00 is
satisfied for any i € {1,...,n}. Hence for any i € {1,...,n}, we have i — co. Thus,
(5.15)—(5.17) still hold. Then by the expression

k
TI(k+1,0)=T(k+1,0)+ Y TI°(k+1,5 + 1)(uGY — uG;)II(},0),
§=0

we can prove II(k,0) — 0, k — oo by a similar argument as that discussed above.
This completes the proof of this theorem. ]

6. Simulation results. In this section, we provide an example to illustrate the
performance of the distributed extended SG algorithm proposed in this paper.

Consider a network composed of n = 12 sensors whose dynamics obey the following
observation model:

4 0. 4 , 0. 4
(6.1) Ypy1 = 93;@% " Fwp F05w = 9T<Pk Wi

where 87 = [67,0.5I3] € R¥*6 and )" = [(¢V")7, (wi)T]" € R®. Here we assume that
the unknown parameter matrix

-1
0o=10
1

N = O

1
2
3

Let the regression vectors {¢2’i €R3 k>0,i=1,...,12} be generated according to
the following expression:

T

k—1

[0 128+ 31 2tcos(2 )E“O] L i=1,4,7,10,

n
t=0
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T
k—1 .
- [o,o,1.2’“+21.2tcos (”)54 L i=2,58,11,
n

t=0

T
12k+21 2tcos(l )at,o 0] L i=3,6,9,12,
t=0

where the {e}} are i.i.d. with e} ~N(0,0.16) (Gaussian distribution with Ze10 mean
and variance 0.16). Moreover, by Remark 4.4, we set the noise wkH Uquﬁ with
{Uj41,k>0,i=1,...,12} being independent and uniformly distributed in [-0.5,0.5],
and also independent of .

The network structure is shown in Figure 1. Here we use the Metropolis rule to
construct the weights. i.e.,

1= ai if 1 =1,
ap; = J#i

1/(max{n;,n;}) if 1€ N;\ {i},

where n; is the degree of the node ¢. The initial estimate is taken as 90 0 € R6*3
and the step sizes are taken as u=0.25 and v =0.6.

From the structure of the network topology in Figure 1 and the observation model,
it is clear that Assumptlons 4.1 and 4.2 hold. By the settings of the regression
vector (i)k’l and the noise wy;, we can verify that for each sensor i the extended

regression vector cpk lacks sufficient excitation. However, they can cooperate to
satisfy Assumption 4.5. We repeat the simulation for s = 100 times with the same
initial states. Thus, for each sensor i, we can get the following 100 sequences:

{ (9”9,”,> k:l,...,lOOO},i:17...,127p:1,...,1007

where p denotes the pth simulation result. Then

100
1OOZTr (5;;5;;,,,), k=1,...,1000, i=1,...,12,

is used to approximate the estimation error of sensor i in Figure 2, which shows the
estimation errors of the 12 sensors by using the noncooperative SG algorithm in [6]
and the proposed distributed SG algorithm with colored noise. From Figure 2, we

e6

4
82

g &

*3

e7

Fic. 1. Network topology of 12 sensors.
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Estimation errors of all sensors by Algorithm 3.1 2 Estimation errors of all sensors by non-cooperative algorithm

sensor 1 sensor 1

18 ——sensor 2 18 ——sensor 2

sensor 3 sensor3 [
sensor 4 16 sensor 4 | 4
sensor 5 sensor5 ||
sensor 6 I7AN sensor 6
. —sensor 7 —sensor7 7]
S sensor 8 ] 12 sensor 8
g sensor 9 g sensor9 | |
g sensor 10 B N\ sensor 10 |
k= sensor 11 £ 10 sensor 11
£ —— sensor 12 g ——— sensor 12
2 8
= =
6
4
2
0
800 1000 0 200 400 600 800 1000
time. k time. k

Fic. 2. Comparison between Algorithm 3.1 and noncooperative extended SG algorithm.

can see that if we use the noncooperative algorithm to estimate 6, the errors of all 12
sensors will not tend to zero since all sensors do not satisfy the excitation condition
in [6], while the estimation errors of all 12 sensors in Algorithm 3.1 converge to zero
because all sensors cooperatively satisfy Assumption 4.5, which shows the cooperative
effect of multiple sensors that the estimation task can be fulfilled through exchanging
information between sensors even if any individual sensor cannot.

7. Concluding remarks. This paper proposed a distributed extended SG al-
gorithm to estimate unknown parameter matrices of dynamic stochastic systems with
colored noise. The extended regression vectors are introduced by integrating the ob-
served signals and estimates of noises. Then the algorithm is developed by combining
the diffusion strategy of extended regression vectors with the consensus strategy of
neighbors’ estimates. Under the cooperative non-PE conditions on regressors, the
almost sure convergence of the proposed algorithm was established. The convergence
results for the distributed algorithm are obtained without resorting to the indepen-
dence or stationarity conditions of stochastic regression vectors, which makes our
theory applicable to stochastic feedback systems. By a simulation example, we reveal
the cooperative effect of multiple sensors in accomplishing the task. For further re-
search, it is of interest to optimize the diffusion process between sensors and analyze
the convergence rate of the distributed extended SG algorithm Moreover, how to es-
tablish the performance analysis of distributed algorithms for the dynamic systems
with complex noise models, e.g., the noise model with infinite unknown parameters,
the time-varying colored noise model, is another interesting research topic.
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