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This paper considers the problem of estimating unknown sparse time-varying signals for stochastic dynamic systems. To deal
with the challenges of extensive sparsity, we resort to the compressed sensing method and propose a compressed Kalman filter
(KF) algorithm. Our algorithm first compresses the original high-dimensional sparse regression vector via the sensing matrix and
then obtains a KF estimate in the compressed low-dimensional space. Subsequently, the original high-dimensional sparse signals
can be well recovered by a reconstruction technique. To ensure stability and establish upper bounds on the estimation errors, we
introduce a compressed excitation condition without imposing independence or stationarity on the system signal, and therefore
suitable for feedback systems. We further present the performance of the compressed KF algorithm. Specifically, we show that
the mean square compressed tracking error matrix can be approximately calculated by a linear deterministic difference matrix
equation, which can be readily evaluated, analyzed, and optimized. Finally, a numerical example demonstrates that our algorithm
outperforms the standard uncompressed KF algorithm and other compressed algorithms for estimating high-dimensional sparse
signals.
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1 Introduction

Parameter estimation or filtering problems have been ex-
tensively studied due to their broad applications, including
signal processing, target tracking, navigation, and adaptive
control [1–5]. Several efficient adaptive algorithms have
been proposed to fulfill the desired estimation task, such as
the least mean squares (LMS) algorithm, the recursive least
squares with forgetting factor (FFLS) algorithm, and, in par-
ticular, the Kalman filter (KF) algorithm [2, 6, 7]. The last
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one triggers extensive research interest since the KF algo-
rithm can produce an optimal state estimation in the mini-
mum mean square error sense if noise processes obey Gaus-
sian distribution.

Over the past few years, considerable progress has been
made in estimating unknown parameters for a linear regres-
sion model or state space model [5, 8–16]; among them,
refs. [14–16] investigated secure state estimation problems
for linear systems with deterministic observation matrices.
Most of the existing literature (e.g., refs. [10–16]) focuses
on the case where regression vectors or observation matri-
ces are deterministic while paying insufficient attention to the
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stochastic one. In fact, stochastic dynamic systems are ubiq-
uitous and include many classical systems, such as the Ham-
merstein system, the autoregressive model with exogenous
inputs (ARX), and the nonlinear ARX system [17, 18]. The
corresponding theoretical investigation is also of particular
significance.

In the context of stability and performance evaluation for
stochastic dynamic systems, analyzing the product of random
matrices poses a significant theoretical challenge. Most of the
existing literature relies on assumptions of signal indepen-
dence and stationarity within the system [19–21]. Such sta-
tistical assumptions are too stringent and simplistic to meet
practical requirements under certain circumstances. For in-
stance, the stochastic regression vectors are usually corre-
lated in a general feedback control system since regression
vectors contain input and output signals, and current inputs
rely on previous inputs and outputs. Note that a stochastic
excitation condition was proposed in ref. [22], relaxing inde-
pendence and stationarity assumptions. Under this condition,
the stability of three adaptive filtering algorithms (LMS, KF,
FFLS) was eventually developed, which were widely utilized
for the case of general stochastic signals. Nevertheless, chal-
lenges remain when practical systems are high-dimensional
but sparse since the above excitation condition is difficult or
even impossible to satisfy, and the traditional filtering algo-
rithms may become invalid. This status quo motivates us
to weaken the excitation and improve the estimation perfor-
mance.

There have been attempts to consider sparsity as a priori to
improve the tracking performance of unknown signals [3,23].
One technique for sparse system identification is to add a
regularization term into the cost function, motivated by the
fact that signal tracking can be recast as the optimization of
model prediction error based on the input-output data. Ref.
[24] proposed an adaptive filter based on the LMS algorithm
and incorporated a ℓ1-norm penalty of the coefficients into its
cost function to accelerate convergence and reduce the mean
squares error. Ref. [19] presented the ℓ1-norm regularized
versions of the recursive least squares algorithm, assuming
that regression vectors are stationary and ergodic, and gen-
erated consistent estimates for linear stochastic systems with
sparse parameters. Ref. [25] proposed an online alternating
minimization (OAM) algorithm to track sparse signals and
established the strong consistency of the proposed algorithm.
In addition to the ℓ1-norm penalty in refs. [19, 24, 25], there
are several popular alternatives to induce sparse solutions, in-
cluding ℓγ (0 < γ < 1) [26] and smoothed shear absolute
deviation [27]. It is noteworthy that the above literature takes
the sparsity of unknown parameters into account, while the
case where regression vectors are sparse also deserves atten-

tion.

The compressed sensing (CS) theory, as another technique
for estimating sparse signals [28, 29], is beneficial to deal
with possible degeneration of covariance matrices of regres-
sion vectors (i.e., insufficient excitation), especially when the
regression vectors are high-dimensional but sparse. It guaran-
tees the recovery of high-dimensional signals from fewer ob-
servations than the Nyquist/Shannon sampling principle con-
siders necessary. We remark that refs. [30–32] incorporated
the CS technique into the least squares, the LMS, and the
FFLS algorithms, respectively, followed by relatively elegant
theoretical results for the stability and upper bounds for the
tracking error. When it comes to the KF algorithm, ref. [33]
combined it with the Dantzig selector, which is an auxiliary
CS optimization algorithm to estimate sparse signals. Ref.
[10] utilized the pseudo-measurement technique to take the
sparsity constraint into account while minimizing the track-
ing error based on the KF algorithm. Then numerical simula-
tions demonstrated that the algorithms in refs. [10, 33] were
viable for improving tracking performance. However, a rig-
orous stability analysis and performance results for tracking
errors are still lacking.

Inspired by promising advances in CS, our paper proposes
a compressed KF algorithm for identifying time-varying
sparse stochastic regression models. We first perform a
Kalman iteration based on the compressed regression data
to generate a low-dimensional estimate for the compressed
unknown signal. After that, an appropriate signal recon-
struction algorithm is exploited to recover the original high-
dimensional sparse signal. We establish stability and tracking
performance bounds without independent or stationary sig-
nal assumptions, which makes our results applicable to feed-
back systems. The main challenge is to analyze the product
of non-independent and non-stationary random matrices and
deal with the inherent dependence of the signals. We resort to
stochastic stability theory and CS theory to handle the above
issues. The primary contributions are summarized in the fol-
lowing three aspects.

• A compressed KF algorithm on the basis of the CS the-
ory is proposed to deal with high-dimensional but sparse sig-
nals in stochastic dynamic systems, while most of the litera-
ture revolves around the case where regression vectors or ob-
servation matrices are deterministic (see, e.g., refs. [10–16]).

• The stability analysis of the compressed KF algorithm is
provided without resorting to the independence or stationarity
of the system signal as commonly used in refs. [19, 34–36].
This paper further provides the approximate expressions for
the covariance matrix of the compressed tracking error, which
can be easily evaluated, analyzed, and even optimized.
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• Compared with the excitation conditions imposed on
the original high-dimensional regression vectors (cf., refs.
[22, 37, 38]), a much weaker compressed excitation condi-
tion is introduced, which implies that even though the tra-
ditional uncompressed KF algorithm may fail in parameter
estimation on account of insufficient excitation, the com-
pressed KF algorithm can still fulfill the task of estimating
high-dimensional sparse signals.

2 Preliminaries

In this section, we introduce some notations and preliminary
knowledge.

2.1 Notations

Rn represents the set of n-dimensional real vectors. For a vec-
tor x ∈ Rn, ∥x∥0 = #

{
i | x(i) , 0

}
with x(i) being the ith element

of the vector x and # being the cardinality of the set. That is,
∥x∥0 is the number of non-zero elements in x. Rm×n stands for
the set of m×n real matrices. Im describes the m-dimensional
square identity matrix. The notation X ≻ Y (X ≽ Y) denotes
that X − Y is positive definite (semi-positive definite), where
X and Y are symmetric matrices. Given a matrix X ∈ Rm×n,
λmin(·) and λmax(·) denote the minimum and maximum eigen-
values of the matrix. The spectral norm ∥X∥ is defined by
∥X∥ = {λmax(XXT )} 1

2 . The notation tr(X) denotes the trace of
the corresponding matrix X. Given a random matrix Z, let
∥Z∥Lp = {E[∥Z∥p]}

1
p , p > 1 be its Lp-norm where E[·] de-

notes the expectation operator. We use E[·|·] to represent the
conditional expectation operator and use P{·} to denote the
probability. For a matrix sequence {Xt} and a positive scalar
sequence {xt}, Xt = O(xt) means that there exists a constant
C > 0 independent of t such that ∥Xt∥ 6 Cxt holds for all
t > 0.

2.2 Compressed sensing theory

Compressed sensing (CS) theory, a significant signal process-
ing technique for efficient recovery and reconstruction of sig-
nals, has been widely used in various fields, including infor-
mation theory, communication, and computer vision. It con-
siders how to recover a signal x ∈ Rm from a noisy measure-
ment:

z = Dx + ε, (1)

where D ∈ Rd×m is the sensing matrix (d ≪ m)1) and ε ∈ Rd is
the noise or measurement perturbation bounded by ∥ε∥ 6 C.
Clearly, it is challenging or even impossible to solve this ill-
posed problem. However, with the help of the sparse priors,

the original high-dimensional signal x is likely to be recov-
ered from the observation z. Hence, assume that x is s-sparse,
i.e., ∥x∥0 6 s for some s 6 d ≪ m.

As discussed below, the efficiency of the CS method will
depend heavily on the construction of the sensing matrix and
the design of the signal reconstruction algorithm.

Construction of the sensing matrix To guarantee that eq.
(1) can discriminate approximately sparse unknown parame-
ter vectors, ref. [28] introduced the restricted isometry prop-
erty (RIP) as a condition on the sensing matrix D.

Definition 1 (RIP) For an integer s and the sensing ma-
trix D ∈ Rd×m (1 6 s 6 m), we say that the matrix D satisfies
the RIP of order s if there exists a constant δs ∈ [0, 1), which
is the smallest quantity such that

(1 − δs)∥b∥2 6 ∥DLb∥2 6 (1 + δs)∥b∥2, ∀b ∈ R#L, (2)

holds for every submatrix DL which is formed by columns of
D corresponding to the indices in the set L ⊂ {1, · · · ,m} with
#L 6 s.

Remark 1 The RIP, at least when applied to sparse
vectors, characterizes matrices that are nearly orthonormal.
From eq. (2), it is straightforward that 1 − δs 6 λmin(DT

L DL)
6 λmax(DT

L DL) 6 1 + δs. As can be seen, the s-restricted
isometry constant δs grows as s does.

Considerable progress has been made to generate matri-
ces satisfying the RIP; for example, the deterministic matrix
methods, including Vandermond matrices [39] and the de-
terministic Fourier measurements [40], and stochastic matrix
methods, including Gaussian and Bernoulli random sensing
matrices [41], random Weibull matrices [42]. Also, regarding
the random sensing matrices, we have the following result
[41].

Lemma 1 For given d, m, and 0 < δ < 1, if the sensing
matrix D ∈ Rd×m is a Gaussian or Bernoulli random matrix,
then it holds that for some constants c1, c2 depending only
on δ, for a prescribed δ and for any s 6 c1d/ log(m/s), the
probability that RIP holds is no less than 1 − 2e−c2d.

Remark 2 Ref. [41] established the connection between
constants c1 and c2. It is clear that when c1 is small enough,
c2 enables it to be larger than 0. Let c1 = δ3/120, then for
given d > 120s log(m/s)/δ3, the sensing matrix D has proba-
bility not less than 1 − 2e−c2d of satisfying RIP (eq. (2)).

Design of the signal construction algorithm The recov-
ery problem of the model eq. (1) can be formulated as a con-
vex optimization problem:

min
x∈Rm
∥x∥1 ,

s.t. ∥z − Dx∥ 6 C,
(3)

1) The relation d ≪ m means that d is much smaller than m.
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where ∥x∥1 ,
∑m

i=1

∣∣∣x(i)
∣∣∣.

The following lemma from ref. [28] analyzed the upper
bound of the reconstruction error.

Lemma 2 Suppose that s satisfies δ3s + 3δ4s < 2 where
δ3s and δ4s are defined in Definition 1. Let the signal x0 be s-
sparse and perturbation ε be subject to ∥ε∥ 6 C, the recovered
signal x∗ derived from solving (3) obeys

∥x − x∗∥ 6 CsC,

where Cs ,
4

√
3(1 − δ4s) −

√
1 + δ3s

is a positive constant.

Remark 3 This lemma shows that the recovery of the
signal is stable. In other words, a small measurement pertur-
bation ε can only lead to a small derivation of the recovered
signal from the true signal. What’s more, the signal can be
accurately reconstructed when the measurement perturbation
is zero.

3 Problem formulation

3.1 System model

Consider the following time-varying stochastic sparse regres-
sion model:

yk = φ
T
k θk + vk, k > 0, (4)

where yk and vk are scalar observation and noise, respectively,
θk ∈ Rm is an unknown s-sparse parameter vector of interest
(i.e., ∥θk∥0 6 s), and φk ∈ Rm is the 3s-sparse stochastic re-
gression vector (i.e., ∥φk∥0 6 3s). The time-variation of θk is
denoted as follows:

τωk , θk − θk−1, k > 1, (5)

where θk is time invariant when τ = 0, otherwise, is time
varying. Here we concentrate on the case where the regres-
sion vector and the unknown parameter vector are sparse. It
is prevalent in practical scenarios such as industrial robots,
field monitoring, and channel estimation [43–45].

In contrast to most of the literature that considers deter-
ministic vectors or matrices [10–16], here, the sparse re-
gression vector φk in eq. (4) is stochastic, which has prac-
tical significance in feedback systems. For example, if φk

consists of current and past input-output data, i.e., φk =

[yk, . . . , yk−p, xk, . . . , xk−q]T with xk being the input signal at
time k, then the model eq. (4) can be reduced to ARX model
[18] with time-varying coefficients, and it is clear that φk is
stochastic and can not satisfy stringent statistical conditions
such as the independent and identically distributed condition
when the control xk = f (y j, j 6 k) is designed based on past
observations.

In this paper, our aim is to track the time-varying sparse
signal θk by using the observations {yk, k > 1} and the sparse
stochastic regression vectors {φk, k > 1}.

3.2 Compressed Kalman filter algorithm

The KF algorithm is widely used in various realms including
system control and signal processing due to the optimality in
the posterior mean square sense when the noises have Gaus-
sian distribution. Note that eqs. (4) and (5) can be recast as a
state space model with state θk, then it is natural to consider
the following KF algorithm [6, 7]:

θ̂k+1 = θ̂k + ρ
Pk−1φk

R + ρφT
k Pk−1φk

(yk − φT
k θ̂k), (6)

Pk = Pk−1 −
ρPk−1φkφ

T
k Pk−1

R + ρφT
k Pk−1φk

+ ρQ, (7)

where ρ ∈ (0, 1) is defined as step size, P0 ≻ 0, R > 0, Q ≻ 0,
and θ̂0 are deterministic and can be arbitrarily chosen.

With respect to theoretical analysis, refs. [22, 37, 38]
proved the stability of the standard KF algorithm (i.e., eqs.
(6) and (7)) under the following stochastic excitation condi-
tion imposed on the original regression vectors {φk}: There
exists a constant h > 0 such that

{
λ0

k , k > 0
}
∈ S0(λ0) for

some λ0 ∈ (0, 1), where S0(λ0) is defined by eq. (17), and λ0
k

is defined as follows:

λ0
k , λmin

E
 1
1 + h

(k+1)h∑
i=kh+1

φiφ
T
i

1 + ∥φi∥2

∣∣∣∣∣∣Fkh


 (8)

with Fk , σ{φi, ωi, vi−1, i 6 k}. However, when dealing
with high-dimensional but sparse signals, the KF algorithm
does not always perform well since the mentioned excitation
condition eq. (8) is hard or even impossible to satisfy. To
improve this situation, we resort to the CS theory to weaken
the condition eq. (8) by reducing the dimension of measure-
ments.

Now, in combination with the CS method, we propose the
compressed Kalman filter algorithm (see Algorithm 1) to ful-
fill the tracking task of sparse signals.

To be specific, the sensor first utilizes the sensing matrix
D ∈ Rd×m (s 6 d ≪ m) to compress the regression vector by
ψk = Dφk. Hence we rewrite the original model eq. (4) as

yk = φ
T
k θk + vk = ψ

T
k ζk + φ

T
k θk − ψT

k ζk + vk

= ψT
k ζk + φ

T
k [Im − DT D]θk + vk , ψT

k ζk + vk, (9)

where ζk, vk are transformed according to ζk = Dθk, vk =

φT
k [Im − DT D]θk + vk. vk can be regarded as the new “noise”

term. Note also that for k > 1,

ζk = ζk−1 + τωk, (10)
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Algorithm 1 Compressed Kalman filter algorithm
Input: {yk, φk}k>1, step size ρ ∈ (0, 1), Q ≻ 0,R > 0, sens-
ing matrix D ∈ Rd×m.
Output: {̂θk+1}, k > 1.
Intialize: Begin with an arbitrary initial vector ζ̂1 and ma-
trix P0 ≻ 0,

for each time k = 1, 2, · · · do
Step 1. Compression: ψk = Dφk.
Step 2. Estimation in a low-dimensional dimension.

Lk =
Pk−1ψk

R + ρψT
k Pk−1ψk

, (11)

Pk = Pk−1 −
ρPk−1ψkψ

T
k Pk−1

R + ρψT
k Pk−1ψk

+ ρQ, (12)

ζ̂k+1 = ζ̂k + ρLk(yk − ψT
k ζ̂k). (13)

Step 3. Reconstruction:

θ̂k+1 = arg min
θ∈Θ
∥θ∥1, (14)

where Θ = {θ ∈ Rm | ∥Dθ − ζ̂k+1∥ 6 C}.

where ωk = Dωk.

Next, based on the new model of data, we can view {ψk, yk}
as new measurements and perform the KF algorithm to obtain
a low-dimensional estimate ζ̂k for the compressed unknown
signal ζk. Finally, we recover a high-dimensional estimate
θ̂k for the original unknown sparse signal θk by solving the
convex optimization problem (eq. (3)).

Remark 4 The reconstruction step (Step 3) in Algorithm
1, not affecting the execution of the remainder of the algo-
rithm, need not be executed at every iteration. In practice,
Step 3 can be performed every K (K ≫ 1) iteration to recover
the original high-dimensional sparse signal, i.e., θK , θ2K , · · · ,
thus lessening the computation burden. There are several al-
gorithms applicable to Step 3, e.g., interior-point, the orthog-
onal matching pursuit (OMP), the basis pursuit, and the basis
pursuit denoising algorithms [46–48]. In addition, we can
choose the upper bound on the compressed estimation error
C(τ, δ4s) in Remark 13 to act as the constant C.

Subsequently, we analyze the stability and performance of
Algorithm 1 regarding the upper bound of the estimation er-
ror and the approximate expression of the true mean square
compressed tracking error matrix.

4 Definitions and assumptions

For further discussion, we need to introduce the following
notations and definitions in ref. [38].

4.1 Definitions

Definition 2 For any random matrix or vector sequence
x = {xk(ρ), k > 1} and real numbers p > 1, ρ∗ ∈ (0, 1), the
Lp-stable family is defined by

Lp(ρ∗) =
x : sup

ρ∈(0, ρ∗]
sup
k>1
∥xk(ρ)∥Lp

< ∞
 .

Definition 3 For any random square matrix sequence
Z = {Zk(ρ)} and real numbers p > 1, ρ∗ ∈ (0, 1), the stochastic
exponentially stable family is defined by

Sp(ρ∗) =
{

Z :

∥∥∥∥∥∥∥
k∏

t=s+1

(I − ρZk(ρ))

∥∥∥∥∥∥∥
Lp

6 M(1 − αρ)k−s,

∀ρ ∈ (0, ρ∗], ∀k > s > 0,

for some M > 0, and α ∈ (0, 1)
}
.

(15)

Correspondingly, the deterministic exponential stability fam-
ily is defined by

S(ρ∗) =
{

Z :

∥∥∥∥∥∥∥
k∏

t=s+1

(I − ρE[Zk(ρ)])

∥∥∥∥∥∥∥ 6 M(1 − αρ)k−s,

∀ρ ∈ (0, ρ∗], ∀k > s > 0,

for some M > 0, and α ∈ (0, 1)
}
.

(16)

For convenience, the following sets are introduced.

Sp ,
∪

ρ∈(0, ρ∗]
Sp(ρ∗), S ,

∪
ρ∈(0, ρ∗]

S(ρ∗).

Next, for a scalar sequence x = {xk, k > 0}, we define

S0(λ) =
{

x : xk ∈ [0, 1] ,E

 k∏
t=s+1

(
1 − x j

) 6 Mλk−s,

∀k > s > 0, for some M > 0
}
,

(17)

where λ ∈ [0, 1) is a parameter reflecting the stability margin.
Also,

S0 ,
∪
λ∈(0,1)

S0(λ).

Definition 4 A random process x = {xk, k > 0} is said
to belong to the weakly dependent classMp, p > 1, if there
exists a constant Cx

p depending only on p and the distribution
of {xk} such that for k > 0 and h > 1,∥∥∥∥∥∥∥

k+h∑
i=k+1

xi

∥∥∥∥∥∥∥
Lp

6 Cx
ph1/2.
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Remark 5 The set Mp includes the martingale differ-
ence sequences (m.d.s.), zero mean ϕ- and α-mixing se-
quences, and linear processes (a process generated from
a white noise source via a linear filter with absolutely
summable impulse response) as special cases (cf., [38]).

4.2 Assumptions

For the stability and performance analysis, we make the fol-
lowing assumptions about the sensing matrix, the regression
vectors, and the observation noise.

Assumption 1 The sensing matrix D ∈ Rd×m satisfies the
RIP with order 4s where the 4s-restricted isometry constant
is denoted as δ4s (see Definition 1).

Assumption 2 There exists a constant h > 0 such that
{λk, k > 0} ∈ S0(λ) for some λ ∈ (0, 1), where S0(λ) is de-
fined by eq. (17), and λk is defined as follows:

λk , λmin

E
 1
1 + h

(k+1)h∑
i=kh+1

ψiψ
T
i

1 + ∥ψi∥2

∣∣∣∣∣∣Fkh




with Fk , σ{φi, ωi, vi−1, i 6 k} and supk>1 ∥ψk∥ , Cψ < ∞.

Remark 6 Intuitively, Assumption 2 implies that the
smallest eigenvalue λk is not “too small”. Consider an ex-
treme case where φk = 0. It is straightforward that λk = 0
and Assumption 2 is not satisfied. At this point, the mea-
surement {φk, yk} contains no information about the unknown
parameter, and thus the system is non-identifiable. Inspired
by this, some “not too small” or “nonzero” excitation condi-
tions are imposed on the regression vectors φk to fulfill the
task of parameter estimation or signal tracking.

Remark 7 We remark that the main difference between
the traditional excitation condition in refs. [22, 37, 38] and
our assumption (see Assumption 2) is that Assumption 2 is
assumed for the compressed regression vectors {ψk} instead
of the original high-dimensional ones {φk}. Since the dimen-
sion of {ψk} is much smaller than that of {φk}, for the high-
dimensional and sparse regression vectors, Assumption 2 is
much easier to satisfy than the traditional excitation condition
in refs. [22, 37, 38]. In other words, even in the case where
the non-compressed KF algorithm cannot fulfill the estima-
tion tasks, our proposed compressed KF algorithm may still
get the compressed estimation results stably, see the simula-
tion results in Section 7.

Assumption 3 For some z > 2, the unknown parameter
θ is Lz-bounded, i.e., supk ∥θk∥Lz

= Cθ < ∞. Furthermore,
{Lkvk} ∈ Mr, {ωk} ∈ Mr, r > 2 with the parameters Cn

r and
Cω

r , respectively.

Remark 8 By Assumption 3, noises and parameter vari-
ations are assumed to be weakly dependent with certain

bounded moments to build a more refined bound in Theorem
2 than that in Theorem 1. In contrast, weaker assumptions
(i.e., moment conditions) are imposed on vk and ωk in Theo-
rem 1.

Assumption 4 Let Fk , σ{φi, ωi, vi−1, i 6 k}, for each
k > 1 we have

E[vk |Fk] = 0, E[ωk+1|Fk] = E[ωk+1vk |Fk] = 0,

E[v2
k |Fk] = Rv

k, E[ωk+1ω
T
k+1] = Qω

k+1,

sup
k>1
{E[|vk |r |Fk] + E[∥ωk+1|r∥]} < ∞, r > 1.

Remark 9 Assumption 4 implies that the noise and the
parameter variation are endowed with white noise characters,
which are used to analyze the approximate tracking perfor-
mance of Algorithm 1 (see Theorem 4), although it is stronger
than Assumption 3.

Assumption 5 There exists a number t > 7 together with
a function ϕ(m)→ 0 (as m→ ∞) such that∥∥∥∥E [

ψkψ
T
k |Fk−m

]
− E

[
ψkψ

T
k

]∥∥∥∥
Lt
6 ϕ(m) ∀k,m. (18)

Remark 10 Eq. (18) describes the decaying correlation
between ψkψ

T
k and Fk−m. In other words, the larger the time

distance m, the smaller the correlation. This assumption can
be readily satisfied by introducing a certain weak dependence
requirement on the compressed regression vector {ψk}, e.g.,
ϕ-mixing property.

5 Main results

Now, we are in the position to describe the main technical
results about the proposed algorithm.

5.1 Stability results

In this section, in order to perform the stability analysis for
Algorithm 1, we first obtain the compressed estimation error
equation. By eqs. (13), (9), and (10), we have

ζ̃k+1 = (I − ρFk )̃ζk − ρLkvk + τωk+1,

Fk = Lkψ
T
k , (19)

where ζ̃k = ζk − ζ̂k denotes the compressed estimation error.
Then, we provide the exponential stability of the homoge-
neous part of the compressed error equation (19) and a pre-
liminary upper bound for the compressed tracking error of
the proposed compressed KF algorithm.

Theorem 1 Consider the time-varying model (4) and the
compressed error equation (19). Under Assumption 1 and
Assumption 2, we have {ρFk} ∈ Sp, ∀p > 1. Furthermore, if
for some β > 2, p > 1, and

πp , sup
k

∥∥∥Ξk logβ(e + Ξk)
∥∥∥

Lp
< ∞
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hold, where Ξk =
3δ4s√
1−δ4s
∥θk∥ + ∥vk∥ + τ

√
1 + δ4s ∥ωk+1∥, then

the compressed tracking error {̃ζk, k > 0} is Lp-stable and

lim sup
k→∞

∥∥∥ζ̃k

∥∥∥
Lp
6 c

[
πp logβ

(
e + π−1

p

)]
, (20)

where c is a positive constant.

Remark 11 See the proof of Theorem 1 in Section 6.1.
From eq. (19) and the definition of Ξk, we know that the up-
per bound of tracking error consists of three parts: The first
part is caused by the compression error which gets smaller as
δ4s gets smaller; the second part is related to the system noise
vk while the third part is relevant to the parameter variation
ωk. Note that by Remark 2, when dimensions of the sens-
ing matrix D satisfy the inequality d > 480s log(m/4s)/δ3

4s,
the RIP parameter δ4s can be arbitrarily small. On this basis,
if the magnitudes of the system noise vk and the parameter
variation ωk are also small, then the upper bound of the esti-
mation error will be small.

With more conditions about the system noise vk and the pa-
rameter variation ωk, we can further construct a more refined
upper bound on the compressed tracking error ζ̃k+1.

Theorem 2 Under Assumptions 1, 2, and 3, we have for
any k > 0, for some constant v,

∥̃ζk+1∥Lv 6B1,v
√
ρ + B2,v

τ
√
ρ
+ B3,v

δ4s√
1 − δ4s

+ B4,v (1 − αρ)k+1 ,

where B1,v, B2,v, B3,v, B4,v, α ∈ (0, 1) are positive constants de-
fined in the proof, which is irrelevant to ρ, τ, δ4s.

Remark 12 The proof of Theorem 2 is given in Section
6.2. Theorem 2 roughly indicates the trade-off between track-
ing ability and noise sensitivity.

Remark 13 Consider the special case that v = 1. When
τ > 0 (i.e., the unknown parameter is time-varying), we
know B1,1

√
ρ + B2,1τ/

√
ρ reaches its minimum 2

√
τB1,1B2,1

at the optimal step-size ρ∗ = τB2,1
(
B1,1

)−1. Then there
exists an integer K > 0, such that we have for k > K,
B4,1(1 − αρ)k+1 6

√
τB1,1B2,1. Here,

K = max
{⌈

log(τB1,1B2,1 − 2 log(B4,1))
2 log(1 − αρ)

⌉
, 0

}
(21)

and then we have for k > K,∥∥∥ζ̃k

∥∥∥
L1
6 3

√
τB1,1B2,1 + B3,1

δ4s√
1 − δ4s

, C(τ, δ4s),

where ⌈·⌉ denotes rounding up operator.

From Remark 13, the probability that the compressed
tracking error stays within a specific range is analyzed in the
following corollary.

Corollary 1 Under the same conditions in Theorem 2,
we suppose that τ > 0, ρ = τB2,1

(
B1,1

)−1. Then there ex-
ists an integer K > 0, such that for any integer k > K
and any constant ξ ∈ (0, 1), there exists a positive constant
η = max

{
1, 2Cξ (τ, δ4s)

}
such that

P
{∥∥∥ζ̃k

∥∥∥ 6 ηC1−ξ (τ, δ4s)
}
> 1 − Cξ (τ, δ4s)

η
,

where C (τ, δ4s) = 3
√
τB1,1B2,1+B3,1

δ4s√
1 − δ4s

with constants

B1,1, B2,1, B3,1 being defined in Theorem 2.

Remark 14 The proof of Corollary 1 can be found in
Section 6.3. C (τ, δ4s) goes to zero as τ and δ4s goes to zero.
Then, η = 1. Finally,

∥∥∥ζ̃k

∥∥∥ tends to zero with a probability of
nearly one.

From Corollary 1 and the step of the reconstruction of the
estimates in Algorithm 1, we ultimately establish an upper
bound on the tracking error of the uncompressed sparse sig-
nal

Theorem 3 Assume that the sensing matrix D ∈ Rd×m

satisfies 4sth RIP with s satisfying δ3s + 3δ4s < 2. Under the
same conditions as used in Corollary 1, there exists an integer
K > 0, such that for any integer k > K and any ξ ∈ (0, 1),

P
{∥∥∥∥̂θk − θk

∥∥∥∥ 6 CsηC1−ξ (τ, δ4s)
}
> 1 − Cξ (τ, δ4s)

η

holds for some positive constant η = max
{
1, 2Cξ (τ, δ4s)

}
with C (τ, δ4s) being defined in Corollay 1.

Remark 15 Detailed proof of Theorem 3 is given in Sec-
tion 6.4. By the expression for the constant Cs, it is straight-
forward that Cs may be only relevant to δ4s, and it becomes
smaller when δ4s becomes smaller.

From Theorems 1, 2, and 3, we can see that the stability
results of the compressed KF algorithm make no appeal to
the independence or stationarity conditions of the regression
vectors {φk} and thus can be applied to the stochastic feed-
back systems.

5.2 Performance results

In Section 5.1, under the compressed excitation condition and
RIP of the sensing matrix, the upper bound of the Lp-norm of
the estimation error is established, indicating how the estima-
tion error is influenced by RIP constant δ4s, the noise vk and
parameter drift τωk. In this subsection, we provide the per-
formance results to accurately evaluate or optimize the per-
formance of the compressed KF algorithm. It is then nec-
essary to derive an explicit expression for the mean square
compressed tracking error, defined as follows:

Πk = E
[̃
ζkζ̃

T
k

]
.
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Nevertheless, one of the leading technical difficulties for
calculating Πk lies in the dependence among {ψk}. The cross-
term originating from this dependence is generally negligible
but quite complicated. We therefore introduce the following
simple linear deterministic difference equation for Π̂k:

Π̂k+1 =(I − ρE[Fk])Π̂k(I − ρE[Fk])T + ρ2E[Rv
kLkLT

k ]

+ τ2DQω
k+1DT (22)

where Π̂0 = E[̃ζ0ζ̃
T
0 ], and Rv

k and Qω
k+1 are defined in Assump-

tion 4.
Also, we demonstrate that this simple expression Π̂k can

arbitrarily well approximate Πk with the help of the assump-
tion on the weak (or decaying) dependence. The following
theorem centers on this idea.

Theorem 4 Suppose that Assumptions 1, 2, 4, and 5,
and for any z > 1, {θk} ∈ Lz hold. Considering the tracking
error ζ̃k defined by eq. (19) and the approximate expression
Π̂k defined by eq. (22), we have, for any ρ ∈ (0, ρ∗] and any
k > 1,

∥Πk+1 − Π̂k+1∥ 6 cσ(ρ)
ρ + τ2

ρ
+

δ2
4s

1 − δ4s
+

(
1 − αρ

2

)k
 ,

where σ(ρ) is a function that tends to zero as ρ tends to zero.
It is defined by σ(ρ) = min

m>1
{ √ρm + ϕ(m, ρ)}. c > 0 and

α ∈ (0, 1) are constants.

The proof of Theorem 4 is presented in Section 6.5. Theo-
rem 4 presents an approximate expression for the covariance
matrix of the compressed estimation error and explicitly cal-
culates the approximation error. The approximation performs
well in the case where adaption gain ρ is appropriately small.
Moreover, when δ4s gets smaller, the quality of approxima-
tion gets better.

To further simplify the expression for Π̂k, the strengthened
assumption is introduced and gain a clearer view of the ef-
fect of ρ on Πk. Assuming that E [Fk] and E

[
LkLT

k

]
do not

vary with k, the following corollary is able to be derived by
Theorem 4 directly.

Corollary 2 Assume that Rv
k ≡ Rv, Qω

k ≡ Qω, E [Fk] =
F, and E

[
LkLT

k

]
= G. Then under the same conditions of

Theorem 4, we have for all ρ ∈ (0, ρ∗], k > 1,

Πk = ρRv +
τ2

ρ
Qω + O

σ(ρ) ·
ρ + τ2

ρ
+

δ2
4s

1 − δ4s

 + o(1),

where the term o(1) converges to 0 at an exponential rate as
k → ∞, σ(ρ) is defined in Theorem 4, and

Rv = Rv

∫ ∞

0
e−FtGe−FT tdt, Qω =

∫ ∞

0
e−FtDQωDT e−FT tdt.

Remark 16 A trivial proof is listed in Section 6.6. Since
σ(ρ) goes to zero as ρ goes to zero, it follows that

Πk ∼ ρRv +
τ2

ρ
Rω, k → ∞, ρ→ 0. (23)

Clearly, the error term caused by noise positive correlates
with ρ while the error term caused by parameter drift neg-
atively correlates with ρ. Hence, for the sake of minimizing
the tracking error, the choice of ρ concerns the trade-off be-
tween noise and parameter drift. Therefore, considering that
the right hand of eq. (23) is in the form of the matrix, we take
“trace” on both sides and obtain

E
[∥∥∥ζ̃k

∥∥∥2
]
∼ ρtr(Rv) +

τ2

ρ
tr(Rω).

The right-hand side reaches its minimum 2τ
√

tr(Rv) · tr(Rω)

at the optimal step size τ
√

tr(Rv)/tr(Rω), indicating the prac-
tical consequences of the Theorem 4. An argument similar to
the one in Corollary 1 and Theorem 3 shows that the track-
ing error bound for the original high-dimensional signal gets
quite small with a large probability.

6 Proofs of the main results

6.1 Proof of Theorem 1

One of the main difficulties of stability analysis lies in the
analysis of the errors arising from the compression step. To
this end, we resort to the RIP property of the sensing matrix
D and then present the following key lemma.

Lemma 3 Under Assumption 1, we have

∥Lkφ
T
k [Im − DT D]θk∥

6
3δ4s

2
√
ρR (1 − δ4s)

∥Pk−1∥1/2 · ∥ψk∥ · ∥θk∥ .

Proof. Since ∥φk∥0 6 3s and ∥θk∥0 6 s, we first define in-
dex sets of nonzero elements as L1 = {m1,m2, · · · ,m3s} and
L2 = {n1, n2, · · · , ns}, respectively. Next, we retain all el-
ements indexed by L = L1 ∪ L2 from φk, θk, and the cor-
responding columns of the matrix D. Then we remove the
remaining elements and denote the resulting vectors and ma-
trix as φk,4s, θk,4s, and D4s, respectively (In cases where the
elements of φk and θk are non-zero with the same indexes, we
just keep #L (#L < 4s) elements of φk, θk, and D. Obviously,
the subsequent analysis is almost identical, the major change
being the substitution of 4s for #L, so it is omitted).

By Assumption 1, D satisfies 4sth RIP which implies that
1 − δ4s 6 λi 6 1 + δ4s with λi being any eigenvalue of the
matrix DT

4sD4s. Then we have∥∥∥∥Lkφ
T
k

[
Im − DT D

]
θk

∥∥∥∥
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=
∥∥∥∥Lkφ

T
k,4s

[
I4s − DT

4sD4s

]
θk,4s

∥∥∥∥
6

∥∥∥∥Lkφ
T
k,4s

[
(1 + δ4s)I4s − DT

4sD4s

]
θk,4s

∥∥∥∥
+ δ4s

∥∥∥Lkφ
T
k,4sθk,4s

∥∥∥
6

∥∥∥Lkφ
T
k,4s

∥∥∥ · ∥∥∥∥[(1 + δ4s)I4s − DT
4sD4s

]∥∥∥∥ · ∥∥∥θk,4s

∥∥∥
+ δ4s

∥∥∥Lkφ
T
k,4s

∥∥∥ · ∥∥∥θk,4s

∥∥∥
6 2δ4s

∥∥∥Lkφ
T
k,4s

∥∥∥ · ∥∥∥θk,4s

∥∥∥ + δ4s

∥∥∥Lkφ
T
k,4s

∥∥∥ · ∥∥∥θk,4s

∥∥∥
= 3δ4s

∥∥∥Lkφ
T
k

∥∥∥ · ∥θk∥
6 3δ4s ∥Lk∥ · ∥φk∥ · ∥θk∥

6
3δ4s

2
√
ρR (1 − δ4s)

∥Pk−1∥1/2 · ∥ψk∥ · ∥θk∥ . (24)

The last inequality holds by noting that ∥Lk∥ 6 ∥Pk−1∥1/2
2
√
ρR and

eq. (2), which is the desired conclusion. �
Proof of Theorem 1. By error equation (19), we get

ζ̃k+1 =

k∏
i=0

(I − ρFi )̃ζ0

+

k∑
i=0

k∏
j=i+1

(I − ρF j)(−ρLivi + τωi+1). (25)

From Theorem 3.5 in ref. [37], we know that for any
p > 1, {Fk} ∈ Sp, i.e., for any ρ ∈ [0, ρ∗], ρ∗ ∈ (0, 1), there
exists M > 0, α ∈ (0, 1),∥∥∥∥∥∥∥∥

k∏
j=i+1

(
Id − ρF j

)∥∥∥∥∥∥∥∥
Lp

6 M (1 − αρ)k−i , k > i > 0.

Following the similar procedure as eq. (24) in Lemma 3, we
have

∥−ρLkvk + τωk+1∥

6

1 +
√
ρmax

{
1,Cψ

}
∥Pk−1∥1/2

2
√

R

Ξk. (26)

The remainder of the argument is analogous to that in The-
orem 4.1 in ref. [22] and so is omitted. Combining eqs. (25)
and (26), this theorem is proved. �

6.2 Proof of Theorem 2

Now we define

Λ(k + 1, s) = (Id − ρFk)Λ(k, s).

Λ(s, s) = Id. ∀k > s > 0.

Note that by eq. (25), we have

ζ̃k+1 = Λ(k + 1, 0)̃ζ0 +

k∑
i=0

Λ(k + 1, i + 1) · [−ρLivi + τωi+1
]
.

According to Lemma 7.2 in ref. [37], for any s > 1,
{Pk} ∈ Ls(ρ∗). By Lemma 3 and Hölder inequality, we have
for any e < min{s, z},∥∥∥Lkφ

T
k [Im − DT D]θk

∥∥∥
Le

6
3δ4s

2
√
ρR (1 − δ4s)

∥∥∥Cψ
∥∥∥

Lt
· ∥Pk−1∥1/2Ls

· ∥θk∥Lz

6
Cθ ·
√

CP
∥∥∥Cψ

∥∥∥
Lt

2
√
ρR

3δ4s√
1 − δ4s

, (27)

where CP is the Ls-bound of {Pk} and t =
(

1
e −

1
s −

1
z

)−1
.

By eqs. (11) and (12), we have

Fk = (Pk − ρQ)R−1ψkψ
T
k .

An obvious induction gives {Fk} ∈ Lw(ρ∗) for any w < s.
Combining with {Fk} ∈ Sp(ρ∗), by Lemma A.2 in ref. [22]
and Hölder inequality, we have for some positive constant v,∥∥∥ζ̃k+1

∥∥∥
Lv

6 ∥Λ(k + 1, 0)∥Lp
·
∥∥∥ζ̃0

∥∥∥
Lr
+ ρ

∥∥∥∥∥∥∥
k∑

i=0

Λ(k + 1, i + 1)Livi

∥∥∥∥∥∥∥
Lv

+ ρ

∥∥∥∥∥∥∥
k∑

i=0

Λ(k + 1, i + 1) · Lkφ
T
k [Im − DT D]θk

∥∥∥∥∥∥∥
Lv

+ τ

∥∥∥∥∥∥∥
k∑

i=0

Λ(k + 1, i + 1) · ωi+1]

∥∥∥∥∥∥∥
Lv

6 M (1 − αρ)k+1 ·
∥∥∥ζ̃0

∥∥∥
Lr
+ B1,v

√
ρ + B2,v

τ
√
ρ

+ ρ

k∑
i=0

(1 − αρ)k−i
M ·Cθ ·

√
CP ·

∥∥∥Cψ
∥∥∥

Lt

2
√
ρR

3δ4s√
1 − δ4s

6 B4,v (1 − αρ)k+1 + B1,v
√
ρ + B2,v

τ
√
ρ

+ M
Cθ ·
√

CP ·
∥∥∥Cψ

∥∥∥
Lt

2α
√

R

3δ4s√
1 − δ4s

= B1,v
√
ρ + B2,v

τ
√
ρ
+ B3,v

δ4s√
1 − δ4s

+

+ B4,v (1 − αρ)k+1 , (28)

where B1,v = M ·Cn
r , B2,v = M ·Cω

r , B3,v = M · 3Cθ ·
√

CP·∥Cψ∥Lt

2α
√

R
,

B4,v = M · ∥̃ζ0∥Lr . This proof is completed. �

6.3 Proof of Corollary 1

Following Remark 13, there exists an integer K defined as
eq. (21), such that for any k > K, we have ∥̃ζk∥L1 6 C (τ, δ4s).
Since η = max

{
1, 2Cξ (τ, δ4s)

}
, then by Markov inequality,

we have for ∀k > K,

P
{∥∥∥ζ̃k

∥∥∥ > ηC1−ξ (τ, δ4s)
}
6
E

[∥∥∥ζ̃k

∥∥∥]
ηC1−ξ (τ, δ4s)

6
C (τ, δ4s)

ηC1−ξ (τ, δ4s)



Li R J, et al. Sci China Tech Sci February (2024) Vol. 67 No. 2 389

=
Cξ (τ, δ4s)

η
6

1
2
,

which proofs the corollary. �

6.4 Proof of Theorem 3

Since ζ̂k = ζk− ζ̃k = Dθk− ζ̃k, then by Corollary 1 and Lemma
2, we have for ∀k > K,

P
{∥∥∥∥̂θk − θk

∥∥∥∥ 6 CsηC1−ξ (τ, δ4s)
}

> P
{̃
ζk = Dθk − ζ̂k,

∥∥∥ζ̃k

∥∥∥ 6 ηC1−ξ(τ, δ4s)
}

= P
{∥∥∥ζ̃k

∥∥∥ 6 ηC1−ξ(τ, δ4s)
}

> 1 − C(τ, δ4s)
η

.

Furthermore, Cs becomes smaller as δ4s becomes smaller, in
view of the relationship between Cs and δ4s presented in Re-
mark 3. This proof is completed. �

6.5 Proof of Theorem 4

Before proving Theorem 4, we first introduce Lemma 4 and
Lemma 5 from ref. [22].

Lemma 4 Assume that Assumptions 2 and 5 hold, then
for any p < 2t and q < 4t/7, we have,
(i) There are ρ∗ ∈ (0, 1), and p > 2 such that

{Fk} ∈ Sp(ρ∗) ∩ S(ρ∗). (29)

(ii) There is a real number q > 3 together with a bounded
function ϕ(m, ρ) > 0, with

lim
m→∞,ρ→0

ϕ(m, ρ) = 0

(taking first m to infinity and then ρ to zero) such that ∀m, ∀k,
∀ρ ∈ (0, ρ∗]

∥E[Fk |Fk−m] − E[Fk]∥Lq 6 ϕ(m, ρ). (30)

(iii) Li ∈ Fi, ∀i > 1, and there exists a ρ∗ ∈ (0, 1) such that

{Li} ∈ Lr(ρ∗), {Fi} ∈ L2q(ρ∗) (31)

with r = (1/2 − 1/p − 3/2q)−1, and with p and q defined as
in (i) and (ii).

Lemma 5 Let α ∈ (0, 1) be a constant. Then for any
ρ ∈ (0, 1), we have

sup
k>0

(1 − αρ)k
√

k = O
(
ρ−(1/2)

)
, (32)

∞∑
k=0

(1 − αρ)kk = O
(
ρ−2

)
, (33)

∞∑
k=0

(1 − αρ)k
√

k = O
(
ρ−(3/2)

)
, (34)

where the “ O” constant is dependent on α.

Proof of Theorem 4. Introduce a new sequence {ζk},

ζk+1 = (I − ρE[Fk])ζk − ρLkvk + τωk+1, (35)

where ζ0 = ζ̃0. Recalling eqs. (22) and (35), by Assumption
4, it follows that

Π̂k+1 = E
[
ζk+1ζ

T
k+1

]
.

Then, by Schwarz inequality,∥∥∥∥Πk+1 − Π̂k+1

∥∥∥∥ = ∥∥∥∥∥E [̃
ζk+1ζ̃

T
k+1 − ζk+1ζ

T
k+1

]∥∥∥∥∥
=

∥∥∥∥∥E [(̃
ζk+1 − ζk+1

)
· ζ̃T

k+1 + ζk+1 ·
(̃
ζT

k+1 − ζ
T
k+1

)]∥∥∥∥∥
6

∥∥∥ζ̃k+1 − ζk+1

∥∥∥
L2
·
[∥∥∥ζ̃k+1

∥∥∥
L2
+

∥∥∥ζk+1

∥∥∥
L2

]
. (36)

By Assumption 4, {ωk} and {Lkvk} are m.d.s., and then
{ωk} ∈ Mr and {Lkvk} ∈ Mr. We now proceed as in the
proof of Theorem 2 and by Lemma 4, then we have

∥ζk+1∥L2 = O
(
√
ρ +

τ
√
ρ
+ (1 − αρ)k+1

)
, (37)

where ρ ∈ (0, 1) is a constant. For simplicity, we may take ρ
as the same as that in Theorem 2.

Denote

εk(α) =
√
ρ +

τ
√
ρ
+ (1 − αρ)k+1 +

δ4s√
1 − δ4s

. (38)

By Assumption 4, Lemma 4, and Theorem 2, we have

∥̃ζk+1∥L2 = O(εk(α)). (39)

Collecting eqs. (37) and (39) gives the result∥∥∥ζ̃k+1
∥∥∥

L2
+

∥∥∥ζk+1

∥∥∥
L2
= O (εk (α)) . (40)

So our task now is to consider the term
∥∥∥ζ̃k+1 − ζk+1

∥∥∥
L2

in
eq. (36). By eqs. (19) and (35), we have

ζ̃k+1 − ζk+1

= (I − ρE[Fk])
(̃
ζk − ζk

)
+ ρ (E [Fk] − Fk) ζ̃k − ρLkuk,

where uk = φ
T
k [Im − DT D]θk.

Define

Ω(k + 1, s) = (I − ρE[Fk])Ω(k, s),

Ω(s, s) = I, ∀k > s.

Then for any k > 0, we have∥∥∥ζ̃k+1 − ζk+1

∥∥∥
L2
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6 ρ

∥∥∥∥∥∥∥
k∑

i=0

Ω(k + 1, i + 1) (E[Fi] − Fi) ζ̃i

∥∥∥∥∥∥∥
L2

+ ρ

∥∥∥∥∥∥∥
k∑

i=0

Ω(k + 1, i + 1)Liui

∥∥∥∥∥∥∥
L2

6 ρ

∥∥∥∥∥∥∥
m−1∑
i=0

Ω(k + 1, i + 1) (E[Fi] − Fi) ζ̃i

∥∥∥∥∥∥∥
L2

+ ρ

∥∥∥∥∥∥∥
k∑

i=m

Ω(k + 1, i + 1) (E[Fi] − Fi)
(̃
ζi − ζ̃i−m

)∥∥∥∥∥∥∥
L2

+ ρ

∥∥∥∥∥∥∥
k∑

i=m

Ω(k + 1, i + 1) (E[Fi] − Fi) ζ̃i−m

∥∥∥∥∥∥∥
L2

+ ρ

∥∥∥∥∥∥∥
k∑

i=0

Ω(k + 1, i + 1)Liui

∥∥∥∥∥∥∥
L2

, U1 + U2 + U3 + U4, (41)

where m = m(ρ) , arg min
m>1

[√
ρm + ϕ(m, ρ)

]
.

Notice that
√
ρm(ρ) 6

√
ρm(ρ)+ϕ(m(ρ), ρ) 6

√
ρ+ϕ(1, ρ),

which implies that for some constant c > 0,

m(ρ) 6 1 +
ϕ(1, ρ)
√
ρ
6

c
√
ρ
, ∀ρ ∈ (0, 1).

Hence, (1−αρ)−m(ρ), ρ ∈ (0, 1) is a bounded function for any
α ∈ (0, 1) since (1 − αρ)−m(ρ) 6 (1 − αρ)−

c√
ρ → 1, as ρ → 0.

Henceforth, we will directly use this fact and abbreviate m(ρ)
to ρ.

The next thing to do in the proof is to consider U1 in eq.
(41) for k < m. Denote

s =
(

1
r
+

1
p
+

1
2q

)−1

. (42)

From eq. (38), Lemma 4, and Theorem 2, we have ∀ρ ∈
(0, ρ∗]∥∥∥ζ̃k+1

∥∥∥
Ls
= O (εk(α)) . (43)

Due to the fact that s defined by eq. (42) satisfies[
s−1 + (2q)−1

]−1
> 2, by eq. (43), the following inequality

is obtained

U1 6 ρ
m−1∑
i=0

∥Ω(k + 1, i + 1)∥ · ∥(E[Fi] − Fi)∥L2q
·
∥∥∥ζ̃i

∥∥∥
Ls

=O (ρm (εk(α))) . (44)

Another step in the proof is to estimate U2 in eq. (41).
Denote

u =
(

1
s
+

1
2q

)−1

. (45)

Clearly,
{
−ρL jv j + τω j+1

}
∈ Mr ⊂ Mu. Then by Hölder in-

equality, it follows that for ρ ∈ (0, ρ∗] and for any i > m∥∥∥ζ̃i − ζ̃i−m

∥∥∥
Lu

=

∥∥∥∥∥∥∥∥
i−1∑

j=i−m

[
−ρF jζ̃ j − ρL ju j − ρL jv j + τω j+1

]∥∥∥∥∥∥∥∥
Lu

6 ρ

i−1∑
j=i−m

∥∥∥F j

∥∥∥
L2q

∥∥∥ζ̃ j

∥∥∥
Ls
+ ρ

i−1∑
j=i−m

∥∥∥L ju j

∥∥∥
Lu

+

∥∥∥∥∥∥∥∥
i−1∑

j=i−m

−ρL jv j + τω j+1

∥∥∥∥∥∥∥∥
Lu

= O

ρ i−1∑
j=i−m

ε j(α)

 + O
(

mδ4s√
1 − δ4s

)
+ O(

√
m[ρ + τ])

= O (m (ρ + τ)) + O
(

mδ4s√
1 − δ4s

)
+ O

(
ρm(1 − αρ)i−m

)
. (46)

Eqs. (42) and (45), and the definition of r in eq. (31) make
it obvious that 1/2 = 1/2q+1/u. Eventually, from Lemma 4,
eqs. (46) and (29) yield that for any k > m,

U2 6 ρ
k∑

i=m

∥Ω(k + 1, i + 1)∥ · ∥E [Fi] − Fi∥L2q
·
∥∥∥ζ̃i − ζ̃i−m

∥∥∥
Lu

=O (m (ρ + τ)) + O
(

mδ4s√
1 − δ4s

)
+ O

(
ρ2m(k − m)(1 − αρ)k−m

)
=O

(
m

(
ρ + τ +

δ4s√
1 − δ4s

))
+ O

(
ρ2m sup

k>0

{
k(1 − αρ)k

})
=O

(
m

(
ρ + τ +

δ4s√
1 − δ4s

))
. (47)

It remains to estimate U3 in eq. (41). To this end, for any
i > m,

Fi − E [Fi] =
m−1∑
j=0

δ j(i) + E [Fi|Fi−m] − E [Fi] , (48)

where δ j(i) , E
[
Fi|Fi− j

]
−E

[
Fi|Fi− j−1

]
with j > 0 and i > m.

For any fixed 0 6 j 6 m− 1, define ei = δ j(i)̃ζi−m, it can be
readily verified that

{
ei,Fi− j, i 6 m

}
is a m.d.s.. By eq. (43)

and the fact that 1/2 > 1/2q + 1/s,

∥ei∥L2 6 2 ∥Fi∥L2q
·
∥∥∥ζ̃i−m

∥∥∥
Ls
= O (εi−m(α)) , i > m.

Hence, define S (k, i) ,
∑k

j=i e j. We have for any k > i > m,

∥S (k, i)∥L2
=

k∑
j=i

∥∥∥e j

∥∥∥
L2

= O




k∑
j=i

(
√
ρ +

τ
√
ρ
+ (1 − αρ) j−m +

δ4s√
1 − δ4s

)2


1/2
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= O




k∑
j=i

(
√
ρ +

τ
√
ρ
+

δ4s√
1 − δ4s

)2

+ (1 − αρ)2( j−m)


1/2

= O
(√

k − i + 1
(
√
ρ +

τ
√
ρ
+

δ4s√
1 − δ4s

)
+ (1 − αρ)i−m ρ−1/2

)
.

Proceeding as in the proof of Lemma A.2 in ref. [22], and
combining eq. (38) and Lemma 5, we have for any k > m,

ρ

∥∥∥∥∥∥∥∥
k∑

i=m

Ω(k + 1, i + 1)
m−1∑
j=0

δ j(i)̃ζi−m

∥∥∥∥∥∥∥∥
L2

6 ρ

m−1∑
j=0

∥∥∥∥∥∥∥
k∑

i=m

Ω(k + 1, i + 1)ei

∥∥∥∥∥∥∥
L2

6 ρ

m−1∑
j=0

∥Ω(k + 1,m + 1)∥ · ∥S (k,m)∥L2

+ ρ2
m−1∑
j=0

k∑
i=m+1

∥Ω(k + 1, i + 1)∥L2
· ∥E [Fi]∥ · ∥S (k, i)∥L2

= O
(√

ρmεk

(
α

2

))
. (49)

Note that by eq. (42) and the definition of r in eq. (31), it
is seen that 1/2 = 1/q+ 1/s. Hence from eqs. (30), (43), and
Lemma 4, we have for any ρ ∈ (0, ρ∗],

ρ

∥∥∥∥∥∥∥
k∑

i=m

Ω(k + 1, i + 1) {E [Fi|Fi−m] − E [Fi]} ζ̃i−m

∥∥∥∥∥∥∥
L2

6 ρ

k∑
i=m

∥Ω(k + 1, i + 1)∥ · ∥E [Fi|Fi−m] − E [Fi]∥Lq
·
∥∥∥ζ̃i−m

∥∥∥
Ls

= O
(
ϕ(m, ρ)εk

(
α

2

))
. (50)

Combining with eqs. (49) and (50) and noting eq. (48), we
see that

U3 = O
(
[
√
ρm + ϕ(m, ρ)]εk

(
α

2

))
. (51)

An argument similar to the one used in eq. (28) shows that

U4 = O
(

δ4s√
1 − δ4s

)
,

this in conjunction with eqs. (44), (47), and (51) yields∥∥∥ζ̃k+1 − ζk+1

∥∥∥
= O (ρmεk(α)) + O

(
m

(
ρ + τ +

δ4s√
1 − δ4s

))
+ O

([√
ρm + ϕ(m, ρ)

]
εk

(
α

2

))
+ O

(
δ4s√

1 − δ4s

)
= O

([√
ρm + ϕ(m, ρ)

]
εk

(
α

2

))
.

Then, by substituting this and eq. (40) into eq. (36), we ob-
tain ∀ρ ∈ (0, ρ∗],∥∥∥∥E [̃

ζk+1ζ̃
T
k+1

]∥∥∥∥ = O
([√

ρm + ϕ(m, ρ)
] [
εk

(
α

2

)]2
)
. (52)

Finally, by substituting eq. (38) into eq. (52) we see that
Theorem 4 is true. �

6.6 Proof of Corollary 2

In view of {Fk} ∈ Sp(ρ∗), the stability of I − ρF is obtained.
Then, it is straightforward that Π̂k defined in eq. (22) con-
verges at an exponential rate to Π which satisfies that

Π = (I − ρF)Π(I − ρF)T + ρ2RvG + τ2DQωDT

or

FΠ + ΠF = ρFΠF + ρRvG +
τ2

ρ
DQωDT . (53)

According to Theorem 2,

Πk = O
ρ + τ2

ρ
+

δ2
4s

1 − δ4s

 + o(1).

By Theorem 4,

Π̂k = O
ρ + τ2

ρ
+

δ2
4s

1 − δ4s

 + o(1).

Then,

Π = O
ρ + τ2

ρ
+

δ2
4s

1 − δ4s

 .
Hence, eq. (53) can be further simplified as

FΠ + ΠF = ρ2RvG + τ2DQωDT + O
ρ2 + τ2 +

ρδ2
4s

1 − δ4s

 .
According to the definition of Rv and Rω, the solution of Lya-
puonv equation can be transformed into

Π = ρRvG +
τ2

ρ
Rω + O

ρ2 + τ2 +
ρδ2

4s

1 − δ4s

 .
Then we have

Π̂k = ρRvG +
τ2

ρ
Rω + O

ρ2 + τ2 +
ρδ2

4s

1 − δ4s

 + o(1).

By substituting this equation into Theorem 4, the proof is
completed. �
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7 Simulation results

An example is presented to illustrate the efficacy of the
proposed compressed KF algorithm for tracking of high-
dimensional sparse signals.

We will estimate 2-sparse signal θk ∈ R50 with only the
first two elements being non-zero. Here, we focus on the
time-varying case where τ = 1 and the first two elements of
parameter variation in eq. (5) follow 1/k2 · N(0, 0.12, 2, 1).
Recall that the notation N(ρ, σ2,m, n) represents an m × n-
dimensional matrix in which every element obeys the Gaus-
sian distribution with mean value ρ and standard deviation
σ. Also, the noise sequence vk is supposed to be indepen-
dent identically distributed with N(0, 0.52, 1, 1). To gener-
ate the regression vectors {φk}, assuming that they are 6-
sparse, we first generate the last six elements in φk ∈ R50

by xk+1 = Axk + ξk, x0 ∼ N(0, 1, 6, 1), where the matrix
A ∈ R6×6 is a diagonal matrix with diagonal element being
4/5 and ξk ∼ N(0, 12, 6, 1). It is obvious that the compressed
regression vector ψk = Dφk satisfies the compressed excita-
tion condition (i.e., Assumption 2) while the original high-
dimensional regression vector φk fails to meet the excitation
condition in (i.e., eq. (8)).

To demonstrate the tracking performance of our algorithm,
we set R = 0.25 and Q = 6.7 × I5. Then we set the sensing
matrix as the Gaussian matrix D ∼ N(0, 1/5, 5, 50) and re-
sort to the OMP algorithm [46] to yield the high-dimensional
sparse estimate by tackling the optimization problem eq. (14)
in the reconstruction step. To avoid accidents, we repeat 200
times for our numerical simulations. Figure 1 shows the im-
pact of step size ρ on the performance of our proposed com-
pressed KF algorithm, from which we see that with different
step sizes, the tracking errors fall into a small neighborhood
of zero and the large step size can promote the performance
of the algorithm in a certain sense.

Using the same initial values, we compare our algorithm
with the standard KF algorithm (i.e., eqs. (6) and (7)) with
R = 0.25 and Q = 6.7 × I50 in Figure 2. Figure 2 shows
both the tracking error and tr(Pk) for the standard KF algo-
rithm are apparently larger than that for our compressed KF
algorithm. It is straight that even when the standard KF algo-
rithm fails in estimating high-dimensional and sparse param-
eters, our compressed algorithm can still fulfill the estimation
task. This phenomenon is consistent with the theoretical re-
sults because the original high-dimensional regression vector
φk in the standard KF algorithm lacks sufficient excitation
condition, while the compressed regression vector ψk = Dφk

in our compressed KF algorithm satisfies the compressed ex-
citation condition (i.e., Assumption 2). We also compare our
algorithm with the compressed LMS algorithm [31] (step size

ρ = 0.2) and the compressed FFLS algorithm [32] (forgetting
factor α = 0.8) in Figure 3. From Figure 3, we can see that
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Figure 1 (Color online) Tracking errors for the compressed KF algorithm
with different step sizes.
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Figure 2 (Color online) The trace of Pk for the standard KF algorithm and
the compressed KF algorithm.
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the tracking error of our compressed KF algorithm is smaller
than other compressed algorithms. Hence, our algorithm out-
performs the compressed LMS algorithm and the compressed
FFLS algorithm in tracking sparse signals.

8 Concluding remarks

In this paper, we propose the compressed Kalman filter al-
gorithm based on the compression-estimation-reconstruction
scheme to track unknown high-dimensional sparse signals.
Our proposed algorithm performs well in the estimation task
even if the traditional KF algorithm may not accurately track
unknown sparse signals due to inadequate excitation. Under
a compressed excitation condition, we provide stability anal-
ysis to establish estimation error bounds for the compressed
parameter vector and the original high-dimensional parame-
ter vector with a large probability. The stability results reveal
that the estimation error is positively related to the restricted
isometry constant. Furthermore, we present the tracking per-
formance analysis of the compressed KF algorithm in terms
of the covariance matrix of the compressed tracking error,
which shows that the mean square compressed tracking error
matrix can be approximately calculated by a linear determin-
istic difference matrix equation that can be easily evaluated
and analyzed.

Our algorithm can be utilized to estimate sparse signals in
diverse applications, including channel estimation and field
monitoring. Moreover, many interesting problems deserve
to be further investigated, for example, incorporating an error
feedback scheme to reduce the compression error, optimizing
the sensing matrix online, considering the compressed dis-
tributed KF algorithm, applying the CS method to estimate
unknown sparse attacks, and so on.
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