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Abstract In this paper, we propose a distributed Kalman filter (DKF) for the dynamical system with

general random coefficients. In the proposed method, each estimator shares local innovation pairs with its

neighbors to collectively complete the estimation task. Further, we introduce a collective random observ-

ability condition by which the Lp-stability of the covariance matrix and the Lp-exponential stability of the

homogeneous part of the estimation error equation can be established. In contrast, the stringent conditions

on the coefficient matrices, such as independency and stationarity are not required. Besides, the stability of

the DKF, i.e., the boundedness of the filtering errors, can be established. Finally, from the simulation result,

we demonstrate the cooperative effect of the sensors.
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1 Introduction

The state estimation plays an important role in the areas of signal processing and control engineering [1].
The Kalman filter (KF) is one of the most widely used recursive estimation algorithms. It is well-known
that for the discrete-time linear dynamical systems, the KF is an optimal state estimate in the sense
of the minimum mean square error when the noises have Gaussian distribution [2, 3]. The KF and its
variants have many applications in practical systems, such as guidance and navigation of vehicles.

Over the last decade, the sensor networks have an increasing development, meaning that we can acquire
more data. However, using these data to improve the observability brings great challenges both in the
theoretical and practical aspects. The centralized and distributed frameworks are two main approaches
involved in processing the data collected from the sensors. For the centralized method, there is a fusion
center, which can receive and merge the data from all the sensors at each time instant, such as mea-
surements, observation matrices, and state estimates [4, 5]. Although the centralized method can realize
an optimum estimate, it is vulnerable to a connection failure, delay, and packet loss. The centralized
method lacks robustness in addition to bringing amounts of computational overhead and communication
load among the nodes and the processor. Therefore, the approach to estimating the state in a distributed
way arises [6–15], where each sensor only utilizes the local information and the data from its neighbor-
ing sensors to estimate the unknown states. The distributed state estimation has applications in some
practical systems, such as surveillance and tracking systems [16, 17].

The distributed Kalman filter (DKF) is one of the important algorithms to collectively estimate the
states of the dynamical systems. Much effort has been devoted to the investigation of the DKF where
the coefficient matrices of the systems are deterministic. For example, Battistelli and Chisci [12] studied
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the upper boundedness of the error covariance matrix of the DKF for the systems with time-invariant
coefficients. He et al. [18] established the boundedness of the error covariance matrix and the exponentially
asymptotic unbiasedness of the state estimate for time-varying coefficient matrices. Further, Wang and
Ren [19] investigated the convergence of a distributed hybrid information fusion algorithm based on
optimized weights of time-varying topology and coefficient matrices. The stability analysis of continuous
Kalman-consensus filtering algorithm on a mobile sensor network with a flocking-based mobility control
model was studied in [20], where the coefficient matrices of the dynamical system are considered time-
varying. Some results of the special case with intermittent observations are also obtained. Yang et al. [21]
proposed a random sensor activation scheme for a consensus-based distributed estimation algorithm. Also,
a distributed Kalman filtering algorithm of a linear time-invariant discrete-time system using data packet
drops was proposed in [13]. From the current literature, very few results are obtained relating to the
DKF for the dynamical systems with general random coefficients.

In this paper, the stability of the DKF for the linear dynamical systems with general random coefficient
matrices is considered. We note that the main challenge arising in the theoretical investigation of the
DKF lies in analyzing the properties of the product of the random matrices. Most of the existing
studies on the theoretical analysis of the adaptive filtering algorithms require that the signals satisfy
some stringent conditions, such as independency and statistical stationarity [22, 23]. This makes it hard
or even impossible to apply these theoretical results to practical feedback control systems. Further,
we introduce a collective random observation condition, which can be regarded as the extension of the
random observation condition proposed in [24] using a distributed case. Hence, some good properties of
the product on random matrices can be obtained with the stability of the DKF established. The main
contributions of this paper are summarized as follows.

• First, the DKF algorithm for the dynamical systems with general random coefficients was proposed,
where each sensor diffuses the local innovation pairs (HT

k,iR
−1
k,iHk,i,H

T
k,iR

−1
k,iyk,i) with its neighbors. We

know that most engineering systems are nonlinear and disturbed by noise, and the extended Kalman
filter (EKF) is often used to estimate the states of the system. The algorithm and the results in this
paper may give some clues for the effectiveness of the EKF.

• We introduce a collective random observability condition, in which the Lp-stability of the covariance
matrix can be established by relying on an auxiliary system. Then, the Lp-exponential stability of the
homogeneous part of the estimation error equation can be obtained, which helps to establish the stability
of the DKF further.

• Compared with the current literature, the stability of DKF can be obtained without relying on the
assumptions of the independency and statistical stationarity of the regression signals, which makes it
possible for applications to the stochastic feedback systems. We observe that by the collective random
observability condition, the estimation task can still be fulfilled using the cooperation of multiple sensors
even if any of them cannot do it individually.

The remainder of this paper is organized as follows. We first introduce some preliminaries and propose
the DKF with random coefficients in Section 2. In Section 3, we present the collective random observabil-
ity condition. The main results, including Lp-stability of the covariance matrix, Lp-exponential stability
of the estimation error equation, and the stability of DKF are also presented. We illustrate the coopera-
tive effect of the sensors by a simulation example in Section 4. Section 5 presents the conclusion of the
paper.

2 Problem formulation

2.1 Some preliminaries

In this paper, we useA ∈ R
m×n to denote anm×n-dimensional real matrix. For a matrixA, ‖A‖ denotes

the Euclidean norm, i.e., ‖A‖ = (λmax(AAT))
1
2 , where the notation T denotes the transpose operator

and λmax(·) denotes the largest eigenvalue of the matrix. Correspondingly, we use λmin(·) to denote the
smallest eigenvalue of the matrix. Moreover, E[·], P [·|·] and E[·|·] denote the expectation, the conditional

probability and the conditional expectation operator, respectively. We define ‖A‖Lp
, (E[‖A‖p]) 1

p as the
Lp-norm of the random matrix A. Let A ∈ R

n×n and B ∈ R
n×n be two symmetric matrices, and then

A > B means that A−B is a positive semi-definite matrix. If all elements of a matrix A = {aij} ∈ R
n×n

are nonnegative, then it is a nonnegative matrix, and furthermore if
∑n

j=1 aij = 1 holds for all i = 1,
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then it is called a stochastic matrix. The Kronecker product of two matrices A = {aij} ∈ R
m×n and

B ∈ R
p×q is defined as

A⊗B =




a11B · · · a1nB
...

. . .
...

am1B · · · amnB


 ∈ R

mp×nq.

In this paper, our purpose is to propose a distributed Kalman filtering algorithm based on the in-
formation from neighboring sensors and investigate the stability of the proposed algorithm. In order to
describe the relationship between sensors, an undirected weighted graph G = (V , E ,A) is introduced here,
where V = {1, 2, 3, . . . , n} is the set of sensors, E ∈ V × V is the edge set which is used to describe the
communication between sensors, and A = {aij} ∈ R

n×n is the weighted adjacency matrix. The elements
of the matrix A satisfy aij > 0 if and only if (i, j) ∈ E . The set of the neighbors of sensor i is denoted
by N i = {j ∈ V|(i, j) ∈ E}, and we assume that agent i also belongs to N i, and each sensor can only
exchange information with its neighbors. A path of length ℓ is a sequence of nodes {i1, . . . , iℓ} satisfying
(ij , ij+1) ∈ E for all 1 6 j 6 ℓ− 1. The graph G is called connected if for any two sensors i and j, there
is a path connecting them. The diameter D(G ) of the graph G is defined as the maximum length of the
path between any two sensors. For simplicity of analysis, the stability of the distributed algorithm is
considered under the condition that the weighted adjacency matrix A is symmetric and stochastic. Thus,
it is obvious that A is doubly stochastic.

In order to proceed with our discussion, we need to introduce some definitions similar to those used
in [25].

Definition 1. A random matrix sequence {Ak, k > 0} defined on the basic probability space (Ω,F , P )
is called Lp-stable (p > 0) if

sup
k>0

E[‖Ak‖p] < ∞.

Definition 2. A sequence of n×n random matrices A = {Ak, k > 0} is called Lp-exponentially stable
(p > 0) with parameter λ ∈ [0, 1), if it belongs to the following set:

Sp(λ) =




A :

∥∥∥∥∥∥

k∏

i=j+1

Ai

∥∥∥∥∥∥
Lp

6 Mλk−j , ∀k > j, ∀j > 0, for some M > 0





.

For convenience of discussion, we introduce the following subclass of S1(λ) for a scalar sequence a =
{ak, k > 0}:

S0(λ) =



a : ak ∈ [0, 1),E




k∏

i=j+1

ai


 6 Mλk−j , ∀k > j, ∀j > 0, for some M > 0



 .

Remark 1. It is clear that if there exists a constant a0 ∈ [0, 1) such that ak 6 a0, then {ak} ∈ S0(a0).
More properties about the set S0(λ) can be found in [26].

Definition 3. Let {Ak} be a matrix sequence and {bk} be a positive scalar sequence. Then by Ak =
O(bk) we mean that there exists a constant M > 0 such that

‖Ak‖ 6 Mbk, ∀k > 0.

2.2 Distributed Kalman filter

In this paper, we consider the following discrete-time linear dynamical system:
{
xk+1 = Fkxk +wk+1,

yk,i = Hk,ixk + vk,i,
(1)

where xk is the s-dimensional state vector to be estimated and Fk ∈ R
s×s is the random state evolution

matrix, yk,i ∈ R
d and Hk,i ∈ R

d×s represent the measurement and the random measurement matrices
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for agent i at time instant k respectively, {wk ∈ R
s,vk,i ∈ R

d, k > 0} is an independent noise process
which satisfies the following conditions:

E[wk] = 0, E[wkw
T
k ] = Qk > Q > 0;

E[vk,i] = 0, E[vk,iv
T
k,i] = Rk,i > aiI > 0, E[vk,iw

T
k ] = 0.

Remark 2. The investigation of the linear system with random coefficients has practical significance.
We know that most engineering systems are nonlinear which can be written as the following general
expression:

{
xk+1 = f(xk) + wk+1,

yk = g(xk) + vk,

where f(·) and g(·) are nonlinear functions, and {wk} and {vk} are two noise sequences. In order to
estimate the state of the above system, the EKF is widely used based on the following linearization:

{
xk+1 = f(x̂k) +

∂f(x)
∂x

|xk=x̂k
(xk − x̂k) + wk+1,

yk = g(x̂k) +
∂g(x)
∂x

|xk=x̂k
(xk − x̂k) + vk,

where x̂k denotes the estimate of the state at time k. It is clear that ∂f(x)
∂x

|xk=x̂k
and ∂g(x)

∂x
|xk=x̂k

are two
random matrices.

We assume that the initial state x0 is a random vector with mean x̂0 and covariance matrix P ′
0 > 0,

and is independent of the sequence {wk,vk,i, k > 0}. We first present the standard non-cooperative
KF [27] in Algorithm 1, where x̂′

k,i and x̂k,i denote a prior and a posteriori estimates of xk for node i at
time instant k.

Algorithm 1 Standard non-cooperative Kalman filter

For any given sensor i ∈ {1, . . . , n}, start with an initial estimate x̂′

0,i ∈ R
s and an initial covariance matrix P ′

0,i > 0 ∈ R
s×s. The

standard KF is given as follows.

(Measurement update process)

P
−1

k,i = P
′−1

k,i + H
T

k,iR
−1

k,iHk,i, (2)

x̂k,i = x̂
′

k,i + Kk,i(yk,i − Hk,ix̂
′

k,i), (3)

Kk,i = P
′

k,iH
T

k,i(Hk,iP
′

k,iH
T

k,i + Rk,i)
−1

, (4)

(State prediction process)

x̂
′

k+1,i = Fkx̂k,i, (5)

P
′

k+1,i = FkPk,iF
T

k + Qk. (6)

The matrix inversion formula is used in our analysis, and we list it here.

Lemma 1 ([26]). For any matrices A, B, C and D with suitable dimensions, the following formula

(A+BDC)−1 = A−1 −A−1B(D−1 +CA−1B)−1CA−1

holds, provided that the relevant matrices are invertible.

In order to introduce the DKF, a preliminary result on the standard non-cooperative KF given in
Algorithm 1 is presented here.

Lemma 2. Eq. (3) can be rewritten as the following form:

P−1
k,i x̂k,i = P ′−1

k,i x̂′
k,i +HT

k,iR
−1
k,iyk,i. (7)

Proof. By (3) and (4), we have

x̂k,i = x̂′
k,i + P ′

k,iH
T
k,i(Hk,iP

′
k,iH

T
k,i +Rk,i)

−1(yk,i −Hk,ix̂
′
k,i)

= x̂′
k,i − P ′

k,iH
T
k,i(Hk,iP

′
k,iH

T
k,i +Rk,i)

−1Hk,ix̂
′
k,i
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+P ′
k,iH

T
k,i(Hk,iP

′
k,iH

T
k,i +Rk,i)

−1yk,i

=
[
P ′

k,i − P ′
k,iH

T
k,i(Hk,iP

′
k,iH

T
k,i +Rk,i)

−1Hk,iP
′
k,i

]
P ′−1

k,i x̂′
k,i

+P ′
k,iH

T
k,i(Hk,iP

′
k,iH

T
k,i +Rk,i)

−1yk,i.

Then by the matrix inversion formula and (2), we have

x̂k,i = (P ′−1
k,i +HT

k,iR
−1
k,iHk,i)

−1P ′−1
k,i x̂′

k,i

+P ′
k,iH

T
k,i(Hk,iP

′
k,iH

T
k,i +Rk,i)

−1yk,i

= Pk,iP
′−1
k,i x̂′

k,i + P ′
k,iH

T
k,i(Hk,iP

′
k,iH

T
k,i +Rk,i)

−1yk,i. (8)

Notice that

P−1
k,i P

′
k,iH

T
k,i(Hk,iP

′
k,iH

T
k,i +Rk,i)

−1

= (P ′−1
k,i +HT

k,iR
−1
k,iHk,i)P

′
k,iH

T
k,i(Hk,iP

′
k,iH

T
k,i +Rk,i)

−1

= (HT
k,i +HT

k,iR
−1
k,iHk,iP

′
k,iH

T
k,i)(Hk,iP

′
k,iH

T
k,i +Rk,i)

−1

= HT
k,iR

−1
k,i .

Then by (8) we have

x̂k,i = Pk,iP
′−1
k,i x̂′

k,i + Pk,iP
−1
k,i P

′
k,iH

T
k,i(HkP

′
k,iH

T
k,i +Rk,i)

−1yk,i

= Pk,iP
′−1
k,i x̂′

k,i + Pk,iH
T
k,iR

−1
k,iyk,i,

which completes the proof of the lemma.
Inspired by the expressions of (2) and (7), we propose a DKF for the dynamical system (1) with random

coefficients in Algorithm 2. In order to avoid confusion, the notations x̂k,i and x̂′
k,i represent a prior and

a posteriori estimates of xk for node i at time instant k with the corresponding error covariances Pk,i

and P ′
k,i of the DKF.

Algorithm 2 Distributed Kalman filter

For any given sensor i ∈ {1, . . . , n}, start with an initial estimate x̂′

0,i ∈ R
s and an initial covariance matrix P ′

0,i > 0 ∈ R
s×s, the

DKF is given as follows.

Step 1. Set the initial value at each time instant k as

ξk,i(0) = H
T

k,iR
−1

k,iHk,i, ηk,i(0) = H
T

k,iR
−1

k,iyk,i; (9)

Step 2. Perform the following diffusion process for l = 0, 1, 2, . . . , L with L > D(G ),

ξk,i(l + 1) =
∑

j∈Ni

aijξk,j(l), ηk,i(l + 1) =
∑

j∈Ni

aijηk,j(l); (10)

Step 3. Measurement update process

P
−1

k,i = P
′−1

k,i + ξk,i(L), P
−1

k,i x̂k,i = P
′−1

k,i x̂
′

k,i + ηk,i(L); (11)

Step 4. State prediction process

x̂
′

k+1,i = Fkx̂k,i, (12)

P
′

k+1,i = FkPk,iF
T

k + Qk. (13)

Indeed, the DKF (Algorithm 2) proposed in this paper is obtained by employing the structure of
the standard KF, saving that the innovation pairs (HT

k,iR
−1
k,iHk,i,H

T
k,iR

−1
k,iyk,i) are diffused with its

neighbors. Such a diffusion strategy was used to design the distributed algorithm to estimate the state
in [6, 7]. One can see that when the diffusion step L is large enough, the performance of DKF in
Algorithm 2 is close to the centralized KF which is optimal in the sense of mean square error [28]. We
remark that how to design the coefficients of ξk,i(l) to improve the performance is an important topic in
the investigation of DKF, and some investigations focus on the design of the coefficients for the systems
where Fk and Hk,i are deterministic (e.g., [29–31]). However, for the systems with random parameters,
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Table 1 Some notations

Notation Definition Dimension

Pk diag{Pk,1, . . . ,Pk,n} sn × sn

P ′

k diag{P ′

k,1, . . . ,P
′

k,n} sn × sn

F̄k diag{Fk, . . . ,Fk} sn × sn

Q̄k diag{Qk, . . . ,Qk} sn × sn

X̃k col{x̃′

k,1, . . . , x̃
′

k,n} sn × 1

A A ⊗ Is sn × sn

Hk diag{Hk,1, . . . ,Hk,n} sn × sn

Rk diag{Rk,1, . . . ,Rk,n} sn × sn

Wk col{wk, . . . ,wk} sn × 1

Vk col{vk,1, . . . ,vk,n} dn × 1

it is hard to obtain an explicit solution of the coefficients of ξk,i(l) since the objective function in the
optimization problem is often taken as the mean square error, and thus the methods used in [29–31] may
not be suitable to deal with our case. For simplicity of analysis, we choose the constant coefficients of
ξk,i(l) in this paper. The investigation of seeking the optimal filter gain falls into our future research.

From Steps 1–3 in Algorithm 2, we obtain

P−1
k,i = P ′−1

k,i +

n∑

j=1

a
(L)
ij HT

k,jR
−1
k,jHk,j , (14)

P−1
k,i x̂k,i = P ′−1

k,i x̂′
k,i +

n∑

j=1

a
(L)
ij HT

k,jR
−1
k,jyk,j , (15)

where a
(L)
ij is the i-th row, j-th column entry of AL. Hence by (14), we have

xk = Pk,iP
−1
k,i xk =


Pk,iP

′−1
k,i + Pk,i

n∑

j=1

a
(L)
ij HT

k,jR
−1
k,jHk,j


xk. (16)

Let x̃′
k,i = xk − x̂′

k,i. By (1) and (12), we have x̃′
k+1,i = Fk(xk − x̂k,i) + wk+1. Combining this with

(15) and (16), we can obtain the following error equation for the estimate:

x̃′
k+1,i = FkPk,iP

′−1
k,i x̃′

k,i − FkPk,i

n∑

j=1

a
(L)
ij HT

k,jR
−1
k,jvk,j +wk+1. (17)

For convenience of analysis, we introduce the following notations (see Table 1). In Table 1, col(·, . . . , ·)
denotes a vector stacked by the specified vectors, and diag(·, . . . , ·) denotes a block matrix formed in a
diagonal manner of the corresponding vectors or matrices.

By (17) and the notations in Table 1, we obtain the following matrix form of the estimation error:

X̃k+1 = F̄kPkP
′−1
k X̃k − F̄kPkA

LHT
k R

−1
k Vk +Wk+1, (18)

and by (13), it is clear that

P ′
k+1 = F̄kPkF̄

T
k + Q̄k. (19)

3 Stability of the distributed Kalman filter

3.1 Some assumptions

In order to proceed with our analysis, we introduce some assumptions concerning the graph, the state
evolution matrix, and the measurement matrix.

Assumption 1. The graph G is connected.
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Define the state transition matrix Φ(k, j) as follows:

Φ(k, j) = Fk−1 · · ·Fj , ∀k > j + 1; Φ(j, j) = I. (20)

Assumption 2 (Collective random observability condition). For any ε > 0, there exists δ > 0 such
that for any k,

P{λmin(G(k + h, k)) > δ|Gk−1} > 1− ε,

where h > 0 is an integer, and Gk = σ{Fj ,Hj,i, j 6 k, 1 6 i 6 n}, G(k+h, k) is the collective observability
matrix, i.e.,

G(k + h, k) =

n∑

i=1

k+h∑

j=k+1

ΦT(j, k)HT
j,iHj,iΦ(j, k).

Remark 3. Wang and Guo [24] proved the stability of the random Riccati equation under the following
random observability condition.

For any ε > 0, there exists δ > 0 such that

P



λmin




k+h0∑

j=k+1

ΦT(j, k)HT
j,iHj,iΦ(j, k)


 > δ

∣∣∣∣∣Fk−1



 > 1− ε, (21)

where h0 is a positive integer. Assumption 2 is actually an extension of the condition (21) to the
distributed case.

Remark 4. It is clear that Assumption 2 can be satisfied by the cooperation of all sensors, even if none
of them satisfy the observation condition (21), which reveals that the estimation task can still be fulfilled
by the cooperation of multiple sensors even if any of them cannot do it individually.

Assumption 3. For some r > 1, there exist positive constants M1,M2,M3 and α such that

(i) sup
k

E[‖Hk,i‖32r] < M1 < ∞, i ∈ {1, . . . , n};

(ii) sup
k6j6m6k+h

E[‖Φ(m, j)‖32r+α] < M2 < ∞, ∀k > 0;

(iii) sup
k>0

E[‖Φ(k + h, k)‖16r|Gk−1] < M3 < ∞,

where h > 0 is defined in Assumption 2.

Assumption 4. There exist constants N1 and N2 such that

sup
k6j6k+h

E[‖Hj,i‖8|Gk−1] < N1 < ∞, i ∈ {1, . . . , n}, ∀k,

and

sup
k6j6m6k+h

E[‖Φ(m, j)‖8+α|Gk−1] < N2 < ∞, ∀k,

where h > 0 is defined in Assumption 2 and α is defined in Assumption 3.

Remark 5. It is easy to see that Assumptions 3 and 4 are automatically satisfied if {Fk,Hk,i} is a
bounded sequence which is usually used in [12, 32].

To study the stability of the DKF, the assumptions on the initial value x0 and the noises wk+1 and
vk,i are needed.

Assumption 5. The initial value and the noises satisfy the following conditions:

E[‖x0‖2r] < ∞, sup
k

E[‖wk+1‖2r + ‖vk,i‖4r] < ∞, i ∈ {1, . . . , n}.
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3.2 The main results

We will first establish the stability of the covariance matrix P ′
k.

Theorem 1. Under Assumptions 1–3, the matrix P ′
k defined in Table 1 is L2r-stable.

Proof. By Assumption 1, we have 0 < a
(L)
ij < 1 for L > D(G ) (see [33]). Let Aδ(k) = {λmin(G(k +

h, k)) > δ}, δ > 0. We use {Fk,Hk,i, k > 0, i = 1, . . . , n} to construct an auxiliary time-varying linear
system:

{
θk+1 = Fkθk + δk+1,

y0
k,i =

√
aHk,iθk + εk,i,

(22)

where a , mini,j∈{1,...,n} a
(L)
ij is a positive constant. The initial condition θ0 has a Gaussian distribution

with mean θ̂′
0 and covariance matrix P ′

0, and {δk, εk,i, k > 0} is a sequence of independent Gaussian
random vectors, independent of {Fk,Hk,i, k > 0} with the following properties:

E[δk] = 0, E[δkδ
T
k ] = Qk, E[εk,i] = 0, E[εk,iε

T
k,i] = Rk,i,

E[δkε
T
k,i] = 0, E[εk,iε

T
k,j ] = 0, i 6= j.

Let

Yk = col{y0
k,1, . . . ,y

0
k,n},

Ψk =
√
acol{Hk,1, . . . ,Hk,n},

Ξk = col{ε1k, . . . , εnk}.

Hence, Eq. (22) can be rewritten as

{
θk+1 = Fkθk + δk+1,

Yk = Ψkθk +Ξk.

Then, the minimum-variance linear estimate of θk in (22) can be written as

θ̂′
k+1 = Fkθ̂

′
k + FkP̂

′
kΨ

T
k (ΨkP̂

′
kΨ

T
k +Rk)

−1(Yk −Ψkθ̂
′
k),

θ̂′
k = E[θk|Fk−1],

P̂ ′
k = E[θ̃kθ̃

T
k |Fk−1],

θ̃k = θk − θ̂′
k,

where Fk = σ{G∞,Y0, . . . ,Yk}. Note that {P̂ ′
k} can be recursively generated as follows:

P̂−1
k = P̂ ′−1

k +
n∑

j=1

aHT
k,jR

−1
k,jHk,j , (23)

P̂ ′
k+1 = FkP̂kF

T
k +Qk. (24)

For h > 0 defined in Assumption 2, we introduce another estimate of θk+h, denoted by θ∗
k+h, which is

recursively defined by

θ∗
k+h =

1

a
Φ(k + h, k)G−1(k + h, k)

k+h∑

j=k+1

ΦT(j, k)ΨT
j YjIAδ(k) +Φ(k + h, k)θ∗

kIAc
δ
(k),

where the initial values θ∗
m (m = 1, 2, . . . , h− 1) are defined as

{
θ∗
0 = θ̂′

0,

θ∗
m+1 = Fmθ∗

m.
(25)
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Similar to the proof of Theorem 1.1 in [24], we can obtain that

E[‖P̂ ′
jh‖2r] 6 E[‖θjh − θ∗

jh‖2r] = O(1), j = 1, 2 . . . .

Then we have

sup
k

E[‖P̂ ′
k‖2r] < ∞. (26)

In the following, we will prove that P ′
k,i defined in Algorithm 2 is L2r-stable for all i ∈ {1, . . . , n}.

We use the induction method to prove that for k > 0, P ′
k,i 6 P̂ ′

k, i = 1, 2, . . . , n holds. For k = 0, we

can choose the initial P ′
0,i and P̂ ′

0 such that P ′
0,i 6 P̂ ′

0 holds for i = 1, 2, . . . , n. Next, we assume that

P ′
k,i 6 P̂ ′

k holds for any i ∈ {1, . . . , n}. Then, P ′−1
k,i > P̂ ′−1

k . Hence we have

P ′−1
k,i +

n∑

j=1

aLijH
T
k,jR

−1
k,jHk,j > P̂ ′−1

k +
n∑

j=1

aHT
k,jR

−1
k,jHk,j .

By (14) and (23), we have P−1
k,i > P̂−1

k . Then

FkPk,iF
T
k +Qk 6 FkP̂kF

T
k +Qk

holds, i.e.,

P ′
k+1,i 6 P̂ ′

k+1. (27)

Hence, P ′
k,i 6 P̂ ′

k, i = 1, 2, . . . , n holds for all k > 0 by induction. Thus, by (26), we obtain that P ′
k,i is

L2r-stable. This completes the proof of the theorem.
The following inequality is often used in the proof of the main results:

λmax(BA) = λmax(AB) = λmax(A
1
2BA

1
2 ) 6 λmax(A)λmax(B), (28)

where A and B ∈ R
n×n are two nonnegative definite matrices.

Lemma 3. For all k > m > 0, we have the following inequality:

∥∥∥∥∥∥

k−1∏

j=m

F̄jPjP
′−1
j

∥∥∥∥∥∥

2

6
k−1∏

j=m

(
1− 1

1 + ‖Q̄−1
j ‖‖P ′

j+1‖

)
‖P ′

k‖‖P ′−1
m ‖.

Proof. Let us consider the following equation for k > m,

zj+1 = F̄jPjP
′−1
j zj , j ∈ [m, k − 1],

where zm is taken to be deterministic and ‖zm‖ = 1. Then we have

zk =

k−1∏

j=m

F̄jPjP
′−1
j zm. (29)

Taking the following Lyapunov function Vj = zT
j P

′−1
j zj , we have by Lemma 1

Vj+1 = zT
j+1P

′−1
j+1zj+1 = zT

j P
′−1
j PjF̄

T
j P ′−1

j+1F̄jPjP
′−1
j zj

= zT
j P

′−1
j PjF̄

T
j (F̄jPjF̄

T
j + Q̄j)

−1F̄jPjP
′−1
j zj

= zT
j P

′−1
j [Pj − (P−1

j + F̄T
j Q̄−1

j F̄j)
−1]P ′−1

j zj

= zT
j P

′− 1
2

j P
′− 1

2

j [Pj − (P−1
j + F̄T

j Q̄−1
j F̄j)

−1]P
′− 1

2

j P
′− 1

2

j zj

6 λmax

(
P

′− 1
2

j [Pj − (P−1
j + F̄T

j Q̄−1
j F̄j)

−1]P
′− 1

2

j

)
zT
j P

′−1
j zj .
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By (14), it is clear that P ′−1
k 6 P−1

k . Then by (28) we can obtain

Vj+1 6 λmax([Pj − (P−1
j + F̄T

j Q̄−1
j F̄j)

−1]P ′−1
j )zT

j P
′−1
j zj

= λmax

(
[Pj − (P−1

j + F̄T
j Q̄−1

j F̄j)
−1]

1
2P ′−1

j

·[Pj − (P−1
j + F̄T

j Q̄−1
j F̄j)

−1]
1
2

)
zT
j P

′−1
j zj

6 λmax

(
[Pj − (P−1

j + F̄T
j Q̄−1

j F̄j)
−1]

1
2P−1

j

·[Pj − (P−1
j + F̄T

j Q̄−1
j F̄j)

−1]
1
2

)
zT
j P

′−1
j zj

= λmax

(
[Pj − (P−1

j + F̄T
j Q̄−1

j F̄j)
−1]P−1

j

)
zT
j P

′−1
j zj

6

{
1− 1

1 + λmax(Q̄
−1
j F̄jPjF̄

T
j )

}
zT
j P

′−1
j zj

6

{
1− 1

1 + ‖Q̄−1
j ‖‖P ′

j+1‖

}
Vj ,

where Eq. (19) is used in the last inequality. Hence we have

Vk 6
k−1∏

j=m

(
1− 1

1 + ‖Q̄−1
j ‖‖P ′

j+1‖

)
Vm.

Combining this with (29), we have
∥∥∥∥∥∥

k−1∏

j=m

F̄jPjP
′−1
j

∥∥∥∥∥∥

2

= max
‖zm‖=1

‖zk‖2 = max
‖zm‖=1

∥∥∥zkP ′− 1
2

k P
′ 1
2

k

∥∥∥
2

6 max
‖zm‖=1

∥∥∥zkP ′− 1
2

k

∥∥∥
2 ∥∥∥P ′ 1

2

k

∥∥∥
2

= max
‖zm‖=1

(Vk‖P ′
k‖)

6





k−1∏

j=m

(
1− 1

1 + ‖Q̄−1
j ‖‖P ′

j+1‖

)
 {‖P ′

k‖ max
‖zm‖=1

Vm}

6





k−1∏

j=m

(
1− 1

1 + ‖Q̄−1
j ‖‖P ′

j+1‖

)
 {‖P ′

k‖‖P ′−1
m ‖},

which completes the proof.
In the following, we establish the Lp-exponential stability of the coefficient matrix {F̄kPkP

′−1
k , k > 0}

of (18).

Lemma 4. Under Assumptions 2 and 4, the scalar sequence in Lemma 3 belongs to S0(λ), i.e.,
{
1− 1

1 + ‖Q̄−1
k ‖‖P ′

k+1‖
, k > 0

}
∈ S0(λ).

Proof. By (27) and Lemma 2.4 in [24], we know that the following inequality:

E

[
k−1∏

j=m

(
1− 1

1 + ‖Q−1
j ‖‖P ′

j+1,i‖

)]

6 E

[
k−1∏

j=m

(
1− 1

1 + ‖Q−1
j ‖‖P̂ ′

j+1‖

)]
6 Cλk−m

holds for all i ∈ {1, . . . , n}. By the fact that P ′
k is a partitioned diagonal matrix, we have

E

[
k−1∏

j=m

(
1− 1

1 + ‖Q̄−1
j ‖‖P ′

j+1‖

)]
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= E

[
k−1∏

j=m

(
1− 1

1 + maxi{‖P ′
j+1,i‖}‖Q−1

j ‖

)]
6 Cλk−m,

which completes the proof.

Theorem 2. Under Assumptions 1–4, the matrix sequence {F̄kPkP
′−1
k , k > 0} is L2r-exponentially

stable, where r is defined in Assumption 3.

Proof. By Lemma 3 and the fact P ′−1
k+1,i 6 Q−1

k 6 Q−1, we have

∥∥∥∥∥

k−1∏

j=m

F̄kPkP
′−1
k

∥∥∥∥∥

2r

L2r

6 E







k−1∏

j=m

(
1− 1

1 + ‖Q̄−1
j P ′

j+1‖

)


r

‖P ′
k‖r‖P ′−1

m ‖r



6 ‖Q−1‖r

√√√√√E




k−1∏

j=m

(
1− 1

1 + ‖Q̄−1
j P ′

j+1‖

)

2r√

E[‖P ′
k‖2r]

6 ‖Q−1‖r

√√√√√E




k−1∏

j=m

(
1− 1

1 + ‖Q̄−1
j P ′

j+1‖

)

√
E[‖P ′

k‖2r].

Therefore, by Theorem 1 and Lemma 4, the matrix sequence {F̄kPkP
′−1
k , k > 0} is L2r-exponentially

stable, which completes the proof.
In the following, we consider the stability of the DKF.

Lemma 5 ([34]). Let A = A⊗ Is with A = {aij} ∈ R
n×n being a doubly stochastic matrix, and

Q = diag{Q1, . . . ,Qn}, Q′ = diag{Q′
1, . . . ,Q

′
n},

where Qi ∈ R
s×s, i = 1, . . . , n are nonnegative definite matrices satisfying Q′

i =
∑n

j=1 aijQj . Then the
following inequality holds:

A
TQA 6 Q′.

Theorem 3. Under Assumptions 1–5, the estimation error X̃k defined in (18) is bounded, i.e.,

sup
k

‖X̃k‖Lr
< ∞.

Proof. Let ∆k+1 = Wk+1 − F̄kPkA
LHT

k R
−1
k Vk. Then by (18), we have

X̃k+1 =

k∏

j=0

(F̄jPjP
′−1
j )X̃0 +

k+1∑

j=1

k∏

m=j

(F̄mPmP ′−1
m )∆j .

By Theorem 2, Assumption 5, and the Hölder inequality, we have

‖X̃k+1‖r 6

∥∥∥∥∥∥

k∏

j=0

(F̄jPjP
′−1
j )

∥∥∥∥∥∥
L2r

‖X̃0‖L2r
+

k+1∑

j=1

∥∥∥∥∥∥

k∏

m=j

(F̄mPmP ′−1
m )

∥∥∥∥∥∥
L2r

‖∆j‖L2r

6 O(1)Cλk+1 + C

k+1∑

j=1

λk−j+1‖∆j‖L2r

= O(1) + C

k∑

j=0

λj‖∆k−j+1‖L2r
. (30)
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By (19) and (28), we have

‖F̄kPkA
LHT

k R
−1
k ‖2

= λmax(F̄kPkA
LHT

k R
−2
k HkA

LPkF̄
T
k )

= λmax

(
F̄kP

1
2

k P
1
2

k A
LHT

k R
−2
k HkA

LP
1
2

k P
1
2

k F̄T
k

)

= λmax

(
P

1
2

k F̄T
k F̄kP

1
2

k P
1
2

k A
LHT

k R
−2
k HkA

LP
1
2

k

)

6 λmax

(
P

1
2

k F̄T
k F̄kP

1
2

k

)
λmax

(
P

1
2

k A
LHT

k R
− 1

2

k R−1
k R

− 1
2

k HkA
LP

1
2

k

)

6 λmax(P
′
k)λmax

(
R

− 1
2

k HkA
LP

1
2

k P
1
2

k A
LHT

k R
− 1

2

k R−1
k

)

6 λmax(P
′
k)λmax

(
P

1
2

k A
LHT

k R
−1
k HkA

LP
1
2

k

)
λmax(R

−1
k ). (31)

Notice that AL is still a doubly stochastic matrix. By Lemma 5 and (14), we have

A LHT
k R

−1
k HkA

L 6 diag





n∑

j=1

a
(L)
1j HT

k,jR
−1
k,jHk,j , . . . ,

n∑

j=1

a
(L)
nj HT

k,jR
−1
k,jHk,j





6 diag{P−1
k,1 , . . . ,P

−1
k,n}

= P−1
k .

Combining this with (31), we have

‖F̄kPkA
LHT

k R
−1
k ‖2 6 ‖P ′

k‖tr(R−1
k ) 6 d‖P ′

k‖
n∑

i=1

α−1
i ,

where d is the dimension of vk,i.
Hence, by Theorem 1, it is easy to see that supk ‖F̄kPkA

LHT
k R

−1
k ‖L4r

= O(1). Then by Assumption 5,
we have for all k > 1,

‖∆k‖2r = ‖Wk − F̄k−1Pk−1A
LHT

k−1R
−1
k−1Vk−1‖L2r

6 ‖Wk‖L2r
+ ‖F̄k−1Pk−1A

LHT
k−1R

−1
k−1‖L4r

‖Vk−1‖L4r

= O(1).

By (30), we have

‖X̃k+1‖Lr
= O(1) +O(1)

k∑

j=0

λj = O(1).

This completes the proof of the theorem.

4 A simulation example

In this section, we illustrate the cooperative effect of the sensors by Example 1.

Example 1. Consider the one-dimensional case where the network is composed of three sensors. The
dynamics of each sensor obeys (1) with Fk = 2. The noises {wk} and {vk,i} are identically independently
distributed (i.i.d.) sequences and satisfy wk ∼ N(0, 1), vk,1 ∼ N(0, 0.1), vk,2 ∼ N(0, 0.2), vk,3 ∼
N(0, 0.3). Suppose that {Hk,i} is an i.i.d. sequence and obeys the following distribution:

P (Hk,1 = 0,Hk,2 = 0,Hk,3 = 1) = 0.1, P (Hk,1 = 0,Hk,2 = 2,Hk,3 = 0) = 0.2,

P (Hk,1 = 0,Hk,2 = 2,Hk,3 = 1) = 0.15, P (Hk,1 = 1,Hk,2 = 0,Hk,3 = 0) = 0.15,

P (Hk,1 = 1,Hk,2 = 0,Hk,3 = 1) = 0.1, P (Hk,1 = 1,Hk,2 = 2,Hk,3 = 0) = 0.1,

P (Hk,1 = 1,Hk,2 = 2,Hk,3 = 1) = 0.2.
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Figure 1 (Color online) MSE of three sensors in Example 1. (a) Non-cooperative KF; (b) DKF.

The adjacency matrix is taken as

A =




2/3 1/3 0

1/3 1/2 1/6

0 1/6 5/6


 .

By Example 1.1 in [24], one can verify that none of the regression signals Hk,i (i = 1, 2, 3) of
the three individual sensors satisfy the excitation condition (21), but they can cooperate to satisfy
Assumption 2. In order to estimate the unknown state xk, The mean square error (MSE) of the sensors
(averaged over 200 runs) is shown in Figure 1. From this figure, we see that the MSE of each sensor
using the non-cooperative KF is unbounded while the MSE of the sensors using the DKF proposed in
this paper is bounded, which means that the estimation task can be still fulfilled through exchanging the
information between sensors even though any individual sensor cannot.

5 Concluding remarks

In this paper, we proposed a DKF to estimate the state of the dynamical system with random coefficients
by diffusing the local innovation pairs over the network. Further, we introduced the collective random
observability condition. The theoretical analysis of the stability of the proposed DKF was established,
and the boundedness of the state estimation error was presented without the independency and statisti-
cal stationarity assumptions on the measurement signals. However, the collective random observability
condition may still be conservative, and how to relax the excitation condition to guarantee the stability
of the DKF with random dropouts suggests suitable future investigations.
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