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Abstract: To identify the unknown sparse time-varying parameters of the stochastic dynamic
system, we integrate compressive sensing theory with the traditional recursive least squares with
forgetting factor (FFLS) algorithm, and propose a compressed adaptive filtering algorithm.
Our algorithm is designed to first compress the original high-dimensional sparse regression
vector by using the sensing matrix, and then apply the FFLS algorithm to estimate the
compressed parameters. Subsequently, the original high-dimensional sparse parameters can be
well recovered by a reconstruction technique. We introduce an excitation condition on the
compressed stochastic regressors, under which the stability of the proposed algorithm (i.e., the
upper bound of the estimation error) is established without assuming independence, stationarity
or ergodicity of the system signals. The effectiveness of our theoretical results is demonstrated
by a numerical example, which also shows that our proposed algorithm has better performance
than both the compressed least mean squares algorithm and the uncompressed FFLS algorithm
for tracking high-dimensional sparse parameters.
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1. INTRODUCTION

Parameter estimation or adaptive filtering is one of the
important problems in many fields including robot dynam-
ics (Khosla and Kanade, 1985), data analysis (Gutschker,
2008) and energy management (Yang et al., 2020). As one
of the most popular adaptive filter algorithms, the sta-
bility and performance analysis of recursive least squares
with forgetting factor (FFLS) algorithm has been widely
investigated since it has better performance than many
other algorithms (Cioffi and Kailath, 1984; Kamali et al.,
2011).

However, most theoretical results are established either
by requiring the regression vector to be deterministic, or
by adding assumptions of independence, stationarity or
ergodicity to the signals, which can not be guaranteed
in many cases, such as signals in feedback systems. A
key mathematical difficulty in the identification problem
of stochastic signals is to analyze the properties of ran-
dom matrix product in the estimation error equation.
To deal with it, Guo (1994) proposed a unified excita-
tion condition to ensure the stability of three algorithms
(standard Kalman filter, least mean squares (LMS) and
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FFLS algorithms) without the conditions of independence
and stationarity. Later, Gan and Liu (2020) developed
the stability of the Kalman filter with random coefficients
under a general system model, and our work is also partly
motivated by the framework of their paper.

On the other hand, with the development of network tech-
nology, sparsity becomes one of the important characteris-
tics of high-dimensional signals, such as wireless cognitive
radios, crystal structure and civil images. Knowing the
sparsity of signals in advance can help to design a suitable
algorithm to improve the estimation performance. Many
adaptive sparse algorithms have been proposed in the
existing literature, see Angelosante et al. (2010); Li and
Li (2020). The majority of previous findings performed
sparse signal estimation by inserting penalty terms in
the cost function, which may lead to high computational
complexity and slow estimation speed. As we consider
additional techniques to enhance the performance of the
FFLS algorithm, we note a recently developed theory:
compressive sensing (CS) theory.

Compressive sensing theory is a new sampling theory that
emerged at the start of the twenty-first century. To es-
timate sparse signals, it offers a reliable framework and
requires fewer measurements. In numerous research areas,
including image processing (Romberg, 2008), geological
exploration (Herrmann et al., 2012), and medical imaging
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2008) and energy management (Yang et al., 2020). As one
of the most popular adaptive filter algorithms, the sta-
bility and performance analysis of recursive least squares
with forgetting factor (FFLS) algorithm has been widely
investigated since it has better performance than many
other algorithms (Cioffi and Kailath, 1984; Kamali et al.,
2011).

However, most theoretical results are established either
by requiring the regression vector to be deterministic, or
by adding assumptions of independence, stationarity or
ergodicity to the signals, which can not be guaranteed
in many cases, such as signals in feedback systems. A
key mathematical difficulty in the identification problem
of stochastic signals is to analyze the properties of ran-
dom matrix product in the estimation error equation.
To deal with it, Guo (1994) proposed a unified excita-
tion condition to ensure the stability of three algorithms
(standard Kalman filter, least mean squares (LMS) and

� This work was supported by the National Natural Science Foun-
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FFLS algorithms) without the conditions of independence
and stationarity. Later, Gan and Liu (2020) developed
the stability of the Kalman filter with random coefficients
under a general system model, and our work is also partly
motivated by the framework of their paper.

On the other hand, with the development of network tech-
nology, sparsity becomes one of the important characteris-
tics of high-dimensional signals, such as wireless cognitive
radios, crystal structure and civil images. Knowing the
sparsity of signals in advance can help to design a suitable
algorithm to improve the estimation performance. Many
adaptive sparse algorithms have been proposed in the
existing literature, see Angelosante et al. (2010); Li and
Li (2020). The majority of previous findings performed
sparse signal estimation by inserting penalty terms in
the cost function, which may lead to high computational
complexity and slow estimation speed. As we consider
additional techniques to enhance the performance of the
FFLS algorithm, we note a recently developed theory:
compressive sensing (CS) theory.

Compressive sensing theory is a new sampling theory that
emerged at the start of the twenty-first century. To es-
timate sparse signals, it offers a reliable framework and
requires fewer measurements. In numerous research areas,
including image processing (Romberg, 2008), geological
exploration (Herrmann et al., 2012), and medical imaging

(Li et al., 2011), CS theory has received a great deal of
attention. Zhao et al. (2021) presented a compressive sens-
ing technique based on FFLS to learn high-dimensional
sparse signals. Xie and Guo (2020) presented the com-
pressed consensus normalized LMS algorithm to estimate
unknown high-dimensional sparse signals in the network
based on the CS method. The performance of a compressed
distributed least squares algorithm was then studied by
Gan and Liu (2022).

Due to the benefits of the FFLS algorithm in convergence
speed and estimation accuracy, we integrate compressive
sensing with the FFLS algorithm. A compressed FFLS
algorithm with noisy observations and sparse regression
vectors is proposed to track unknown time-varying sparse
parameters of a stochastic dynamic system. In contrast
to the sparse optimization frameworks in Yazdanpanah
and Diniz (2017); Li and Li (2020), we employ the FFLS
algorithm to estimate the unknown time-varying signals
in a low-dimensional space using compressed regression
vectors. And the estimates of the original high-dimensional
sparse parameters can be well obtained using the signal
reconstruction algorithm. Then we introduce a compressed
excitation condition on the compressed regressors to guar-
antee the stability of the proposed algorithm, and the
upper bound of the estimation error is established. Due to
the sparsity of signals, our compressed excitation condition
is weaker than the excitation conditions in Guo (1994);
Zhao et al. (2021). We remark that compared with Babadi
et al. (2010); Qin et al. (2021), our theoretical results
are established without relying on the assumptions of the
independence and stationarity of regression signals, which
makes it applicable to the stochastic feedback system.

The remainder of this paper is organized as follows. We
first introduce some notations and basic properties of
compressive sensing theory in Section 2. The compressed
FFLS algorithm is presented in Section 3, followed by
its stability analysis in Section 4. A simulation example
is given in Section 5 and some concluding remarks are
provided in Section 6.

2. PRELIMINARIES

2.1 Notations

For an m-dimensional vector x, the p-norm of x is defined
as ‖x‖p = (

∑m
i=1 |xi|p)1/p (1 ≤ p < ∞) with xi being

the ith element of x. In particular, when p = 2, ‖x‖2
represents the Euclidean norm. If no subscript of the norm
is specified in the following text, the Euclidean norm is
used by default. We use ‖x‖0 to denote the number of
non-zero elements in x. A vector x ∈ Rm is said to be s-
sparse if it has at most s non-zero elements, where s � m.
For an m× n-dimensional real matrix A, ‖A‖ denotes the
matrix norm induced by the vector Euclidean norm, and
can be equally calculated by (λmax(A

TA))
1
2 , where (·)T

denotes the transpose operator and λmax(·) denotes the
largest eigenvalue of a matrix. Correspondingly, we denote
the smallest eigenvalue of a matrix as λmin(·). For two
positive scalar sequences {ak, k ≥ 0} and {bk, k ≥ 0},
ak = O(bk) means that there exists a constant C such
that ak ≤ Cbk holds for every k ≥ 0.

For matrices A,B,C and D with appropriate dimensions,
if the relevant matrices are invertible, the following matrix
inversion formula can be obtained (see e.g., Zielke (1968))

(A+BDC)−1 = A−1 −A−1B(D−1 + CA−1B)−1CA−1.
(1)

We introduce some definitions for the random matrix given
by Guo (1994).

Definition 1. A random matrix sequence {At, t ≥ 0}
defined on the basic probability space (Ω,F , P ) is called
Lp-stable (p > 0) if supt≥0 E‖At‖p < ∞. We define

‖At‖Lp � (E‖At‖p)
1
p as the Lp-norm of the randommatrix

At.

Definition 2. A sequence of n × n random matrices A =
{At, t ≥ 0} is called Lp-exponentially stable (p ≥ 0) with
parameter λ ∈ [0, 1), if it belongs to the following set

Sp(λ) =
{
A :

∥∥∥
t∏

j=k+1

(In −Aj)
∥∥∥
Lp

≤ Mλt−k,

∀k ≥ 0, ∀t ≥ k, for some constant M > 0
}
.

For convenience, we introduce the following subclass of
S1(λ) for a scalar sequence a = {at, t ≥ 0}.

S0(λ) =
{
a : at ∈ [0, 1),E




t∏
j=k+1

(1− aj)


 ≤ Mλt−k,

∀t ≥ k, ∀k ≥ 0, for some M > 0
}
.

2.2 Compressive sensing theory

The observation of an m-dimensional signal x0 is defined
as a d-dimensional vector y0 with

y0 = Mx0 + ε, (2)

where M ∈ Rd×m is the sensing matrix and ε ∈ Rd is the
measurement perturbation with a constant bound C, i.e.,
‖ε‖ ≤ C.

Generally, only down-sampled observation y0 is transmit-
ted to the sensor in order to save space and measurements.
The goal of compressive sensing is to accurately recover
the original signal x0 from the observation y0, which is
challenging or perhaps impossible to achieve. However, if
the signal x0 is sparse, then its restoration is achievable.
To deal with the challenge of reconstructing sparse signals,
Candès and Tao (2005) established the concept of the
restricted isometry property (RIP) of the sensing matrix in
CS theory. They demonstrated that if M has the RIP and
the noise is small, the sparse signal can be reconstructed
with high accuracy.

Let M ∈ Rd×m be the sensing matrix, and denote Q ⊆
{1, ...,m} as a set of column indices. #(Q) is the number
of the elements in set Q, andMQ is a d×#(Q)-dimensional
matrix, whose columns are the same as those in M that
correspond to indexes in Q. Similarly, for a vector x ∈ Rm,
xQ ∈ R#(Q) is defined as the column vector obtained after
reserving the elements corresponding to the indices in Q.

Definition 3. (RIP). It is called that a matrix M satisfies
the RIP with order s, if there exists a minimum constant
δs ∈ [0, 1) such that the following inequality

(1− δs)‖xQ‖2 ≤ ‖MQxQ‖2 ≤ (1 + δs)‖xQ‖2 (3)
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(Li et al., 2011), CS theory has received a great deal of
attention. Zhao et al. (2021) presented a compressive sens-
ing technique based on FFLS to learn high-dimensional
sparse signals. Xie and Guo (2020) presented the com-
pressed consensus normalized LMS algorithm to estimate
unknown high-dimensional sparse signals in the network
based on the CS method. The performance of a compressed
distributed least squares algorithm was then studied by
Gan and Liu (2022).

Due to the benefits of the FFLS algorithm in convergence
speed and estimation accuracy, we integrate compressive
sensing with the FFLS algorithm. A compressed FFLS
algorithm with noisy observations and sparse regression
vectors is proposed to track unknown time-varying sparse
parameters of a stochastic dynamic system. In contrast
to the sparse optimization frameworks in Yazdanpanah
and Diniz (2017); Li and Li (2020), we employ the FFLS
algorithm to estimate the unknown time-varying signals
in a low-dimensional space using compressed regression
vectors. And the estimates of the original high-dimensional
sparse parameters can be well obtained using the signal
reconstruction algorithm. Then we introduce a compressed
excitation condition on the compressed regressors to guar-
antee the stability of the proposed algorithm, and the
upper bound of the estimation error is established. Due to
the sparsity of signals, our compressed excitation condition
is weaker than the excitation conditions in Guo (1994);
Zhao et al. (2021). We remark that compared with Babadi
et al. (2010); Qin et al. (2021), our theoretical results
are established without relying on the assumptions of the
independence and stationarity of regression signals, which
makes it applicable to the stochastic feedback system.

The remainder of this paper is organized as follows. We
first introduce some notations and basic properties of
compressive sensing theory in Section 2. The compressed
FFLS algorithm is presented in Section 3, followed by
its stability analysis in Section 4. A simulation example
is given in Section 5 and some concluding remarks are
provided in Section 6.

2. PRELIMINARIES

2.1 Notations

For an m-dimensional vector x, the p-norm of x is defined
as ‖x‖p = (

∑m
i=1 |xi|p)1/p (1 ≤ p < ∞) with xi being

the ith element of x. In particular, when p = 2, ‖x‖2
represents the Euclidean norm. If no subscript of the norm
is specified in the following text, the Euclidean norm is
used by default. We use ‖x‖0 to denote the number of
non-zero elements in x. A vector x ∈ Rm is said to be s-
sparse if it has at most s non-zero elements, where s � m.
For an m× n-dimensional real matrix A, ‖A‖ denotes the
matrix norm induced by the vector Euclidean norm, and
can be equally calculated by (λmax(A

TA))
1
2 , where (·)T

denotes the transpose operator and λmax(·) denotes the
largest eigenvalue of a matrix. Correspondingly, we denote
the smallest eigenvalue of a matrix as λmin(·). For two
positive scalar sequences {ak, k ≥ 0} and {bk, k ≥ 0},
ak = O(bk) means that there exists a constant C such
that ak ≤ Cbk holds for every k ≥ 0.

For matrices A,B,C and D with appropriate dimensions,
if the relevant matrices are invertible, the following matrix
inversion formula can be obtained (see e.g., Zielke (1968))

(A+BDC)−1 = A−1 −A−1B(D−1 + CA−1B)−1CA−1.
(1)

We introduce some definitions for the random matrix given
by Guo (1994).

Definition 1. A random matrix sequence {At, t ≥ 0}
defined on the basic probability space (Ω,F , P ) is called
Lp-stable (p > 0) if supt≥0 E‖At‖p < ∞. We define

‖At‖Lp � (E‖At‖p)
1
p as the Lp-norm of the randommatrix

At.

Definition 2. A sequence of n × n random matrices A =
{At, t ≥ 0} is called Lp-exponentially stable (p ≥ 0) with
parameter λ ∈ [0, 1), if it belongs to the following set

Sp(λ) =
{
A :

∥∥∥
t∏

j=k+1

(In −Aj)
∥∥∥
Lp

≤ Mλt−k,

∀k ≥ 0, ∀t ≥ k, for some constant M > 0
}
.

For convenience, we introduce the following subclass of
S1(λ) for a scalar sequence a = {at, t ≥ 0}.

S0(λ) =
{
a : at ∈ [0, 1),E




t∏
j=k+1

(1− aj)


 ≤ Mλt−k,

∀t ≥ k, ∀k ≥ 0, for some M > 0
}
.

2.2 Compressive sensing theory

The observation of an m-dimensional signal x0 is defined
as a d-dimensional vector y0 with

y0 = Mx0 + ε, (2)

where M ∈ Rd×m is the sensing matrix and ε ∈ Rd is the
measurement perturbation with a constant bound C, i.e.,
‖ε‖ ≤ C.

Generally, only down-sampled observation y0 is transmit-
ted to the sensor in order to save space and measurements.
The goal of compressive sensing is to accurately recover
the original signal x0 from the observation y0, which is
challenging or perhaps impossible to achieve. However, if
the signal x0 is sparse, then its restoration is achievable.
To deal with the challenge of reconstructing sparse signals,
Candès and Tao (2005) established the concept of the
restricted isometry property (RIP) of the sensing matrix in
CS theory. They demonstrated that if M has the RIP and
the noise is small, the sparse signal can be reconstructed
with high accuracy.

Let M ∈ Rd×m be the sensing matrix, and denote Q ⊆
{1, ...,m} as a set of column indices. #(Q) is the number
of the elements in set Q, andMQ is a d×#(Q)-dimensional
matrix, whose columns are the same as those in M that
correspond to indexes in Q. Similarly, for a vector x ∈ Rm,
xQ ∈ R#(Q) is defined as the column vector obtained after
reserving the elements corresponding to the indices in Q.

Definition 3. (RIP). It is called that a matrix M satisfies
the RIP with order s, if there exists a minimum constant
δs ∈ [0, 1) such that the following inequality

(1− δs)‖xQ‖2 ≤ ‖MQxQ‖2 ≤ (1 + δs)‖xQ‖2 (3)
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holds for every column index set Q with #(Q) ≤ s
and every xQ ∈ R#(Q). The constant δs is called the s-
restricted isometry constant.

Remark 1. Condition (3) characterizes the ability of the
matrix M to retain vector norms, and is actually equiv-
alent to the property that all eigenvalues of the matrix
MT

QMQ lie in [1 − δs, 1 + δs]. There are many available
methods including deterministic and random methods to
make M satisfy the RIP condition. For example, Baraniuk
et al. (2008) proved that if the sensing matrix M is a
Gaussian random matrix (i.e., the entries of the matrix
are independently sampled from a Gauss distribution with
zero mean and variance 1/d) , the RIP holds with a high
probability.

The following result shows the upper bound of the recon-
struction error under an RIP condition:

Lemma 1. (Candès et al., 2006) Consider the recovery
problem of the model (2). For any s-sparse signal x0 and
any perturbation ε with ‖ε‖ ≤ C, the recovered signal can
be obtained from

x∗
0 = argmin

x
{‖x‖1 s.t. ‖y0 −Mx‖ ≤ C}. (4)

If s satisfy δ3s + 3δ4s < 2, then the recovered signal x∗
0

obeys ‖x0 − x∗
0‖ ≤ CsC, where the positive constant Cs

can be taken as Cs � 4√
3(1−δ4s)−

√
1+δ3s

.

3. PROBLEM FORMULATION

3.1 System Model

Consider the identification problem of time-varying sparse
parameters. At instant t, the scalar output yt is subject
to the following discrete-time stochastic regression model
with the noise wt,

yt = ϕT
t θt + wt, (5)

where ϕt ∈ Rm is a 3s-sparse stochastic regression vector,
and θt ∈ Rm is a time-varying s-sparse parameter vector
to be estimated (s � m). We denote the variation of the
parameter process at time t as

∆θt = θt − θt−1, t ≥ 1. (6)

It is clear that when ∆θt ≡ 0, (5) degenerates into the
time-invariant case.

3.2 Compressed FFLS algorithm

We know that for the general stochastic regression vector
ϕt without sparsity, the following recursive least squares
algorithm with a constant forgetting factor α is commonly
used to estimate the unknown parameter vector:

θ̂t+1 = θ̂t +
Ptϕt

α+ ϕT
t Ptϕt

(yt − ϕT
t θ̂t), (7)

Pt+1 =
1

α

(
Pt −

Ptϕtϕ
T
t Pt

α+ ϕT
t Ptϕt

)
, t ≥ 0. (8)

Guo (1994) introduced the following excitation condition
to analyze the stability of the FFLS algorithm for a large
class of stochastic processes {ϕt}, i.e. {λt} ∈ S0(λ) where

λt � λmin

[
E
( 1

1 + h

(t+1)h∑
k=th+1

ϕkϕ
T
k

1 + ‖ϕk‖2
∣∣Fth

)]
, (9)

with Ft being a sequence of non-decreasing σ-algebras
and h being a constant integer. However, for the high-
dimensional sparse regression vector ϕt, the excitation
condition (9) is hard to be satisfied. Hence, the classic
FFLS algorithm is not able to accurately track the high-
dimensional sparse time-varying signal θt. Now, we pro-
pose the compressed FFLS algorithm by using the CS
method to improve the tracking performance.

At instant t, we first utilize the sensing matrix M ∈
Rd×m(s ≤ d � m) to obtain the compressed d-
dimensional regression vector φt = Mϕt. Hence model (5)
is converted to the following equation:

yt = ϕT
t θt + φT

t ζt − φT
t ζt + wt

= φT
t ζt + ϕT

t (Im −MTM)θt + wt

= φT
t ζt + w̄t, (10)

where w̄t = ϕT
t (Im−MTM)θt+wt can be regarded as the

extended “noise” term, including the compression error
and the measurement noise. After that, the FFLS algo-
rithm is used to estimate the d-dimensional parameters
ζt = Mθt in the compressed space based on the data

{φt, yt}. Finally, we recover the original estimates θ̂t for
the unknown parameter vector θt by solving the convex
optimization problem (4). The details of the compressed
distributed FFLS algorithm are stated in Algorithm 1.

Algorithm 1 Compressed FFLS algorithm

Input:{ϕt, yt}, t = 0, 1, 2, · · ·
Output:{θ̂t+1}, t = 0, 1, 2, · · ·
Initialization: Start with an initial estimation ζ̂0 ∈ Rd

and an initial positive definite matrix P0 ∈ Rd×d

for each time t = 0, 1, 2, · · · do
Step 1. Compression: φt = Mϕt.
Step 2. Estimation in a lower dimension:

ζ̂t+1 = ζ̂t +
Ptφt

α+ φT
t Ptφt

(yt − φT
t ζ̂t), (11)

Pt+1 =
1

α

(
Pt −

Ptφtφ
T
t Pt

α+ φT
t Ptφt

)
. (12)

Step 3. Reconstruction:

θ̂t+1 = arg min
θ∈B

‖θ‖1, (13)

where B =
{
θ ∈ Rm

∣∣∣‖Mθ − ζ̂t+1‖ ≤ C
}
.

Remark 2. With regard to the selection of the optimiza-
tion target for the sparse signal reconstruction problem
(13), the most sparse solution can be obtained by opti-
mizing ‖θ‖0, but it is nonconvex and NP-hard in general.
Therefore, we consider the 1-norm ‖θ‖1 which is easy to be
solved by using orthogonal matching pursuit (OMP) and
compressive sampling matching pursuit algorithms (Tropp
et al., 2007). Additionally, the constant C in Step 3 of
Algorithm 1 should be chosen appropriately. In fact, it can
be taken as the upper bound of the compressed estimation
error (see cσ3p in Theorem 1).

4. STABILITY ANALYSIS

Before investigating the tracking performance of our com-
pressed algorithm, we first introduce some necessary as-
sumptions.

Assumption 1. (Compressed Excitation Condition): For
the adapted sequences {φt,Ft, t ≥ 0}, where Ft is a
sequence of non-decreasing σ-algebras, there exists an
integer h > 0 such that {λ′

t} ∈ S0(λ) for some λ ∈ (0, 1),
where λ′

t is defined by

λ′
t � λmin

[
E
( 1

1 + h

(t+1)h∑
k=th+1

φkφ
T
k

1 + ‖φk‖2
∣∣Fth

)]
. (14)

Remark 3. Consider a special scenario: the sparse param-
eter vector θt and the sparse regression vector ϕt do not
have the same nonzero indexes, then the output yt is
equal to the noise wt, which does not contain any useful
information about θt. As a result, the estimated value is
manifestly impossible to approach the true value of system
parameters. In the meantime, condition (9) illustrated in
the last section may not be satisfied for the sparse regres-
sion vector. Assumption 1 is introduced by replacing the
original high-dimensional ϕt with the compressed signal
φt, which is weaker than the condition (9).

Assumption 2. The sensing matrix M ∈ Rd×m satisfies
the RIP with order 4s where the 3s- and 4s-restricted
isometry constants denoted as δ3s and δ4s satisfy δ3s +
3δ4s < 2.

Remark 4. Assumption 2 is consistent with the condition
in Lemma 1 to guarantee a small error upper bound upon
the recovery of the compressed estimate to the original
signal.

Lemma 2. (Guo, 1994) Let Pk be generated by (12) with
forgetting factor α ∈ (0, 1). If Assumption 1 holds, then
for any p ≥ 0,

sup
k≥0

E‖Pk‖p < ∞,

provided that α satisfies λ[16hd(2h−1)p]−1

< α < 1, where λ
and h are given by Assumption 1, and d is the dimension
of {φt}.

In order to analyze the stability of the compressed FFLS
algorithm (Algorithm 1), we denote the compressed esti-

mation error as ζ̃t := ζt − ζ̂t, and the variation of the
compressed signal as ∆ζt = M∆θt, then from (10) and
(11), we have

ζ̃t+1 = ζt+1 − ζ̂t+1

=ζt +∆ζt+1 −
(
ζ̂t +

Ptφt

α+ φT
t Ptφt

(yt − φT
t ζ̂t)

)

=(Id −
Ptφtφ

T
t

α+ φT
t Ptφt

)ζ̃t −
Ptφt

α+ φT
t Ptφt

w̄t +∆ζt+1. (15)

Theorem 1. Consider the time-varying model (5) with
Algorithm 1. Under Assumptions 1 and 2 , if the following
conditions hold:

(1) σ3p := supt µt < ∞, where µt = 3δ4s√
1−δ4s

‖θt‖L6p +

‖wt‖L3p +
√
1 + δ4s‖∆θt+1‖L3p ;

(2) supt ‖φt‖L6p < ∞ for some p ≥ 1;

(3) the forgetting factor α satisfies λ[48hd(2h−1)p]−1

< α <
1, where d is the dimension of {φt}, λ and h are given
by Assumption 1.

Then the compressed tracking error {ζ̃t, t ≥ 1} is Lp-
stable, i.e., there exists a constant c such that

lim sup
t

‖ζ̃t‖Lp ≤ cσ3p.

Proof. For the simplicity of the proof, denote Lt =
Ptφt

α+φT
t Ptφt

and it can be easily obtained from (12) that

(Id − Ltφ
T
t ) = αPt+1P

−1
t .

Then by (15), we have

ζ̃t+1 = (Id − Ltφ
T
t )ζ̃t − Ltw̄t +∆ζt+1

= αPt+1P
−1
t ζ̃t − Ltw̄t +∆ζt+1

= α2Pt+1P
−1
t−1ζ̃t−1 − αPt+1P

−1
t Lt−1w̄t−1

+ αPt+1P
−1
t ∆ζt − Ltw̄t +∆ζt+1 = · · ·

= αt+1Pt+1P
−1
0 ζ̃0 −

t∑
k=0

αt−kPt+1P
−1
k+1Lkw̄k

+

t∑
k=0

αt−kPt+1P
−1
k+1∆ζk+1. (16)

On the other hand, multiply both sides of (12) by φt, and
we can see that P−1

t+1Lt can be equally replaced by φt.
Therefore, (16) can be further transformed into

ζ̃t+1 =αt+1Pt+1P
−1
0 ζ̃0 −

t∑
k=0

αt−kPt+1φkw̄k

+

t∑
k=0

αt−kPt+1P
−1
k+1∆ζk+1.

Thus for the Lp-norm of the tracking error, we have

‖ζ̃t+1‖Lp
≤αt+1‖Pt+1P

−1
0 ζ̃0‖Lp

+

t∑
k=0

αt−k‖Pt+1φkw̄k‖Lp

+

t∑
k=0

αt−k‖Pt+1P
−1
k+1∆ζk+1‖Lp

. (17)

The upper bounds of the three terms on the right-hand
side of (17) need to be analyzed one by one. By Lemma 2,
we have supk≥0 E‖Pk‖p < ∞. Hence we just need to think

about the Lp-stability of w̄k, ∆ζk+1 and P−1
k .

Since ϕk is 3s-sparse and θk is s-sparse, the positions of
their non-zero elements can be corresponding denoted as
i1, ..., i3s and j1, ..., js, respectively. Retain all the afore-
mentioned 4s non-zero elements in ϕk and θk, remove the
other positions, and denote the new low-dimension one
as ϕk,4s and θk,4s. Similarly, retain the corresponding 4s
column vectors of matrix M , remove the column vectors in
other positions, and denote the d× 4s-dimensional matrix
as M4s. When ϕk and θk share the same indexes of non-
zero elements, the analysis for such case is similar. Due
to the similarity of the analysis process, only 4s non-zero
elements are taken into consideration.

According to Assumption 2, all eigenvalues of MT
4sM4s are

within the interval [1−δ4s, 1+δ4s], and it can be obtained
that

‖ϕT
k [Im −MTM ]θk‖

=‖ϕT
k,4s[I4s −MT

4sM4s]θk,4s‖
≤‖ϕT

k,4s[(1 + δ4s)I4s −MT
4sM4s]θk,4s‖+ δ4s‖ϕT

k,4sθk,4s‖
≤2δ4s‖ϕk,4s‖‖θk,4s‖+ δ4s‖ϕk,4s‖‖θk,4s‖

≤ 3δ4s√
1− δ4s

‖Mϕk‖‖θk‖ =
3δ4s√
1− δ4s

‖φk‖‖θk‖. (18)
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Assumption 1. (Compressed Excitation Condition): For
the adapted sequences {φt,Ft, t ≥ 0}, where Ft is a
sequence of non-decreasing σ-algebras, there exists an
integer h > 0 such that {λ′

t} ∈ S0(λ) for some λ ∈ (0, 1),
where λ′

t is defined by

λ′
t � λmin

[
E
( 1

1 + h

(t+1)h∑
k=th+1

φkφ
T
k

1 + ‖φk‖2
∣∣Fth

)]
. (14)

Remark 3. Consider a special scenario: the sparse param-
eter vector θt and the sparse regression vector ϕt do not
have the same nonzero indexes, then the output yt is
equal to the noise wt, which does not contain any useful
information about θt. As a result, the estimated value is
manifestly impossible to approach the true value of system
parameters. In the meantime, condition (9) illustrated in
the last section may not be satisfied for the sparse regres-
sion vector. Assumption 1 is introduced by replacing the
original high-dimensional ϕt with the compressed signal
φt, which is weaker than the condition (9).

Assumption 2. The sensing matrix M ∈ Rd×m satisfies
the RIP with order 4s where the 3s- and 4s-restricted
isometry constants denoted as δ3s and δ4s satisfy δ3s +
3δ4s < 2.

Remark 4. Assumption 2 is consistent with the condition
in Lemma 1 to guarantee a small error upper bound upon
the recovery of the compressed estimate to the original
signal.

Lemma 2. (Guo, 1994) Let Pk be generated by (12) with
forgetting factor α ∈ (0, 1). If Assumption 1 holds, then
for any p ≥ 0,

sup
k≥0

E‖Pk‖p < ∞,

provided that α satisfies λ[16hd(2h−1)p]−1

< α < 1, where λ
and h are given by Assumption 1, and d is the dimension
of {φt}.

In order to analyze the stability of the compressed FFLS
algorithm (Algorithm 1), we denote the compressed esti-

mation error as ζ̃t := ζt − ζ̂t, and the variation of the
compressed signal as ∆ζt = M∆θt, then from (10) and
(11), we have

ζ̃t+1 = ζt+1 − ζ̂t+1

=ζt +∆ζt+1 −
(
ζ̂t +

Ptφt

α+ φT
t Ptφt

(yt − φT
t ζ̂t)

)

=(Id −
Ptφtφ

T
t

α+ φT
t Ptφt

)ζ̃t −
Ptφt

α+ φT
t Ptφt

w̄t +∆ζt+1. (15)

Theorem 1. Consider the time-varying model (5) with
Algorithm 1. Under Assumptions 1 and 2 , if the following
conditions hold:

(1) σ3p := supt µt < ∞, where µt = 3δ4s√
1−δ4s

‖θt‖L6p +

‖wt‖L3p +
√
1 + δ4s‖∆θt+1‖L3p ;

(2) supt ‖φt‖L6p < ∞ for some p ≥ 1;

(3) the forgetting factor α satisfies λ[48hd(2h−1)p]−1

< α <
1, where d is the dimension of {φt}, λ and h are given
by Assumption 1.

Then the compressed tracking error {ζ̃t, t ≥ 1} is Lp-
stable, i.e., there exists a constant c such that

lim sup
t

‖ζ̃t‖Lp ≤ cσ3p.

Proof. For the simplicity of the proof, denote Lt =
Ptφt

α+φT
t Ptφt

and it can be easily obtained from (12) that

(Id − Ltφ
T
t ) = αPt+1P

−1
t .

Then by (15), we have

ζ̃t+1 = (Id − Ltφ
T
t )ζ̃t − Ltw̄t +∆ζt+1

= αPt+1P
−1
t ζ̃t − Ltw̄t +∆ζt+1

= α2Pt+1P
−1
t−1ζ̃t−1 − αPt+1P

−1
t Lt−1w̄t−1

+ αPt+1P
−1
t ∆ζt − Ltw̄t +∆ζt+1 = · · ·

= αt+1Pt+1P
−1
0 ζ̃0 −

t∑
k=0

αt−kPt+1P
−1
k+1Lkw̄k

+

t∑
k=0

αt−kPt+1P
−1
k+1∆ζk+1. (16)

On the other hand, multiply both sides of (12) by φt, and
we can see that P−1

t+1Lt can be equally replaced by φt.
Therefore, (16) can be further transformed into

ζ̃t+1 =αt+1Pt+1P
−1
0 ζ̃0 −

t∑
k=0

αt−kPt+1φkw̄k

+

t∑
k=0

αt−kPt+1P
−1
k+1∆ζk+1.

Thus for the Lp-norm of the tracking error, we have

‖ζ̃t+1‖Lp
≤αt+1‖Pt+1P

−1
0 ζ̃0‖Lp

+

t∑
k=0

αt−k‖Pt+1φkw̄k‖Lp

+

t∑
k=0

αt−k‖Pt+1P
−1
k+1∆ζk+1‖Lp

. (17)

The upper bounds of the three terms on the right-hand
side of (17) need to be analyzed one by one. By Lemma 2,
we have supk≥0 E‖Pk‖p < ∞. Hence we just need to think

about the Lp-stability of w̄k, ∆ζk+1 and P−1
k .

Since ϕk is 3s-sparse and θk is s-sparse, the positions of
their non-zero elements can be corresponding denoted as
i1, ..., i3s and j1, ..., js, respectively. Retain all the afore-
mentioned 4s non-zero elements in ϕk and θk, remove the
other positions, and denote the new low-dimension one
as ϕk,4s and θk,4s. Similarly, retain the corresponding 4s
column vectors of matrix M , remove the column vectors in
other positions, and denote the d× 4s-dimensional matrix
as M4s. When ϕk and θk share the same indexes of non-
zero elements, the analysis for such case is similar. Due
to the similarity of the analysis process, only 4s non-zero
elements are taken into consideration.

According to Assumption 2, all eigenvalues of MT
4sM4s are

within the interval [1−δ4s, 1+δ4s], and it can be obtained
that

‖ϕT
k [Im −MTM ]θk‖

=‖ϕT
k,4s[I4s −MT

4sM4s]θk,4s‖
≤‖ϕT

k,4s[(1 + δ4s)I4s −MT
4sM4s]θk,4s‖+ δ4s‖ϕT

k,4sθk,4s‖
≤2δ4s‖ϕk,4s‖‖θk,4s‖+ δ4s‖ϕk,4s‖‖θk,4s‖

≤ 3δ4s√
1− δ4s

‖Mϕk‖‖θk‖ =
3δ4s√
1− δ4s

‖φk‖‖θk‖. (18)
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Combined the definition of w̄k with (18), it can be derived
that

‖w̄k‖L3p = ‖ϕT
k (Im −MTM)θk + wk‖L3p

≤ ‖ϕT
k (Im −MTM)θk‖L3p + ‖wk‖L3p

≤ 3δ4s√
1− δ4s

‖φk‖L6p
‖θk‖L6p

+ ‖wk‖L3p
. (19)

Meanwhile, note that ∆θk+1 is 2s-sparse, with the RIP of
the matrix M , we can obtain

‖∆ζk+1‖L3p
≤

√
1 + δ4s‖∆θk+1‖L3p

. (20)

As for P−1
t+1, by the matrix inversion formula (1), it can be

derived from (12) that P−1
t+1 = αP−1

t + φtφ
T
t .

According to the condition supt ‖φt‖L6p < ∞, it can be
known that

‖P−1
t+1‖L3p

≤ α‖P−1
t ‖L3p

+ ‖φt‖2L6p
≤ · · ·

≤ αt+1‖P−1
0 ‖L3p +

t∑
k=0

αt−k‖φk‖2L6p
< ∞. (21)

Finally, combining the conditions supt ‖φt‖L6p
< ∞, σ3p <

∞ with inequalities (19),(20) and (21), the tracking error
(17) ultimately comes to the conclusion:

‖ζ̃t+1‖Lp ≤ O(αt+1) +

t∑
k=0

αt−k‖Pt+1‖L3p‖φk‖L3p‖wk‖L3p

+

t∑
k=0

αt−k‖Pt+1‖L3p‖φk‖L3p‖φk‖L6p

3δ4s√
1− δ4s

‖θk‖L6p

+

t∑
k=0

αt−k‖Pt+1‖L3p‖P−1
k+1‖L3p

√
1 + δ4s‖∆θk+1‖L3p

≤ O(αt+1) + cσ3p,

where c is a positive constant related to the supremum
of Lp-norm of {Pk}, {φk} and {P−1

k }. This completes the
proof of the theorem. �

We finally establish the upper bound of the estimation
error for the uncompressed signal by using Lemma 1.

Theorem 2. Under the conditions in Theorem 1, the upper
bound for the original signal estimation error is as follows:

lim sup
t

‖θt − θ̂t‖Lp ≤ Cscσ3p,

where Cs is defined in Lemma 1.

Proof. From Theorem 1, we can know that the upper
bound of compressed estimation error

sup
t

‖ζ̃t+1‖Lp = sup
t

‖ζt+1 − ζ̂t+1‖Lp

= sup
t

‖Mθt+1 − ζ̂t+1‖Lp
≤ cσ3p.

Let C = cσ3p in equation (13) of Algorithm 1, then from

Lemma 1, we can obtain that the recovered signal θ̂t+1

obeys:

lim sup
t

‖θt+1 − θ̂t+1‖Lp ≤ Cscσ3p,

which completes the proof. �

The following corollary depicts the probability of the
estimated error of the original high dimensional signal
falling within a certain range.

Corollary 1. Consider the model (10) and the estimation
error (16), under the conditions in Theorem 1. Then for
any given constant ε > 0 and γ ∈ (0, 1), there exists time
instant Tε such that for any t ≥ Tε,

P{‖θt − θ̂t‖ ≤ η(Cscσ3p + ε)1−γ} ≥ 1− (Cscσ3p + ε)γ

η

holds with η = max{1, 3(Cscσ3p + ε)γ}.

Proof. Consider the special case of p = 1 in Theorem 2,

and we have lim supt E‖θt − θ̂t‖ ≤ Cscσ3p. That is to say,

∀ε > 0, ∃Tε ∈ R s.t. ∀t ≥ Tε,E‖θt − θ̂t‖ ≤ Cscσ3p + ε.
Then by the Markov inequality, we have for any t ≥ Tε,

P{‖θt − θ̂t‖ ≥ η(Cscσ3p + ε)1−γ}

≤ E[‖θt − θ̂t‖]
η(Cscσ3p + ε)1−γ

≤ (Cscσ3p + ε)γ

η
≤ 1

3
.

This completes the proof. �
Remark 5. From Theorems 1 and 2, we know that when
the restricted isometry constant δ4s is small, σ3p becomes
small. Moreover, if σ3p is close to zero, we have η = 1.

Thus, the tracking error ‖θt − θ̂t‖Lp
will be stable in

a small neighborhood of zero with a large probability.
We remark that compared with Babadi et al. (2010);
Qin et al. (2021), our theoretical results for the stability
analysis of the compressed FFLS algorithm in this paper
are derived without using any independence or stationarity
assumptions on the regression vectors, which makes our
results more suitable for practical feedback systems.

5. SIMULATION

Consider a 2-sparse parameter identification problem with
a total dimension m = 50, and assume that only the
first two indexes of unknown time-varying parameter vec-
tor θt are non-zero. To simplify the statement, denote
N(µ, σ2,m, n) to represent an m × n-dimensional matrix
in which every element follows the normal distribution
with mean value µ and standard deviation σ. Let the
first two indexes of ∆θt ∼ 1

t2N(0, 0.012, 2, 1). Assume
the observation noises are independently distributed with
wt ∼ N(0, 0.52). Let the regressors be 6-sparse and the last
six elements in ϕt ∈ R50 are generated by xt+1 = Axt +
ξt, x0 ∼ N(0, 1, 6, 1), where the matrix A ∈ R6×6 is a
diagonal matrix with the diagonal elements equal to 4/5
and ξt ∼ N(0, 1, 6, 1). In the compressed FFLS algorithm,
the sensing matrix M is selected as a 5×50-dimensional
random matrix and M ∼ N(0, 1/5, 5, 50).

From the setting of signals θt and regressor ϕt, we can see
that their non-zero elements have no common position,
and thus it makes the uncompressed FFLS algorithm
invalid. Moreover, we can verify that condition (9) is not
satisfied while the compressed excitation condition (14)
(i.e., Assumption 1) holds.

We compare our algorithm (Algorithm 1) with the uncom-
pressed FFLS algorithm (i.e., (7)-(8)) and the compressed
LMS algorithm, using the same initial values. Besides,
we utilize the OMP algorithm to solve the optimization
problem (13). To avoid accidents, we repeat the simulation
200 times. Then the tracking errors of these three algo-
rithms are shown in Fig. 1, from which we can see that
the compressed FFLS algorithm has better performance

than the compressed LMS algorithm, while the uncom-
pressed FFLS algorithm fails to track the sparse unknown
parameters.
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Fig. 1. Tracking errors of three different algorithms

6. CONCLUDING REMARKS

In this paper, a compressed recursive least squares with
forgetting factor algorithm is proposed to track high-
dimensional time-varying sparse signals by using compres-
sive sensing methods. A compressed excitation condition
is proposed to ensure that the compressed regressors can
effectively achieve the estimation task, and the upper
bound of the tracking error is established. Our algorithm
can estimate the unknown high-dimensional sparse signal,
while the traditional FFLS algorithm (cf. Guo (1994)) can-
not due to the sparsity of the regressors. Many interesting
problems deserve to be further studied, such as develop-
ing distributed compressed algorithms and optimizing the
sensing matrix.
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than the compressed LMS algorithm, while the uncom-
pressed FFLS algorithm fails to track the sparse unknown
parameters.
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6. CONCLUDING REMARKS

In this paper, a compressed recursive least squares with
forgetting factor algorithm is proposed to track high-
dimensional time-varying sparse signals by using compres-
sive sensing methods. A compressed excitation condition
is proposed to ensure that the compressed regressors can
effectively achieve the estimation task, and the upper
bound of the tracking error is established. Our algorithm
can estimate the unknown high-dimensional sparse signal,
while the traditional FFLS algorithm (cf. Guo (1994)) can-
not due to the sparsity of the regressors. Many interesting
problems deserve to be further studied, such as develop-
ing distributed compressed algorithms and optimizing the
sensing matrix.
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