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Abstract— With the development of computer science and
communication, the sensor networks are widely applied due
to the advantages of flexibility, fault tolerance, and ease of
deployment. In this paper, a distributed stochastic gradient
(SG) algorithm is proposed where the distributed estimators
are aimed to collectively estimate an unknown time-invariant
parameter from a set of noisy measurements obtained by dis-
tributed sensors. The proposed distributed SG algorithm com-
bines the consensus strategy of the estimation of neighbors with
the diffusion of regression vectors. The cooperative excitation
condition is introduced, under which the strong consistency can
be established for the distributed SG algorithm, without relying
on the independency and stationarity assumptions of regression
vectors which are commonly used in existing literature.

I. INTRODUCTION

Filtering or parameter estimation is a very important
problem in diverse fields including statistical learning, signal
processing, system identification and adaptive control. With
the development of computer science and communication,
the sensor networks are widely applied due to the advantages
of flexibility, fault tolerance, and ease of deployment. The
sensor network brings more and more data, and how to
apply the information from the sensors to design the proper
estimation algorithm is a promising research direction.

Generally speaking, there are three methods to process the
information from the sensors: centralized, distributed and a
combination of both (cf., [1]). For the centralized method,
the information measured by the sensors are transmitted to
a fusion center, and the fusion center use all information
to estimate the unknown signals or parameters. Compared
with the distributed algorithms, the centralized ones are lack
of robustness in addition to the burden brought by a large
amount of computation and communication. In distributed
algorithms, the sensors can cooperate to accomplish a com-
plicated tasks in a cooperative manner even though each
sensor can only receive local information, and has limited
ability of computation and communication, The distributed
estimation of filtering algorithms are widely applied in many
practical engineering systems, such as target localization,
noise elimination, see e.g., [2][3].

In the investigation of distributed estimation or filtering
algorithms, how to use the local information to design the
algorithms is important for the property of the algorithms.
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Three types of strategies are often adopted in the current lit-
erature, i.e., incremental strategy [4], consensus strategy [5],
and diffusion strategy [6]. Based on these three strategies,
many different distributed estimation or filtering algorithms
are proposed, such as the diffusion least mean squares, the
consensus-based Kalman filter, the diffusion least squares.
The stability and the convergence analysis of the distributed
adaptive filtering and the distributed estimation algorithms
are studied. Most results require that the regression signal
satisfies independency and stationarity assumptions (cf., [7]-
[11]). However, it is hard for the regression signals to satisfy
the independency and stationarity assumptions because they
are often produced by the feedback control systems, which
makes it hard or even impossible to apply these theoretical
results to practical systems. A preliminary attempt towards
the relaxation of the independency and stationarity assump-
tions is made by Chen, Liu and Guo (cf., [12], [13] ), where
they provide a cooperative excitation condition to guarantee
the stability of the diffusion least mean square algorithm.
Recently, some elegant results for the distributed least mean
square algorithms are established by Xie and Guo in [5][6]
under a general cooperative information condition.

Compared with least mean square algorithm, the stochastic
gradient algorithm has the advantages of simple expression
and easy computation. In this paper, we focus on the in-
vestigation of the convergence properties of the distributed
stochastic gradient algorithm. We first propose a distributed
stochastic gradient algorithm by combining the consensus
strategies and the diffusion of the regression vectors. We
introduce a “weakest” excitation condition, under which the
convergence of the algorithm can be established. Further-
more, we establish the convergence rate of the distributed
stochastic gradient algorithm. It is worth mentioning that the
work is based on [5][14][15][16][17], the properties of the
product of stochastic matrices are obtained, which plays key
role for our analysis. Our results are obtained without relying
on the assumptions of the independency and stationarity
assumptions.

The rest of this paper is organized as follows. We first
introduce some notations and preliminaries on the distributed
stochastic gradient algorithm In Section II. The strong con-
sistency of the proposed algorithm is established in Section
III and then the convergence rate is given in Section IV. The
concluding remarks are made in the last section.

II. PROBLEM FORMULATION
A. Some Preliminaries

In this paper, we use A ∈ Rm×n to denote an m × n-
dimensional matrix. For a matrix A, ‖A‖ denotes the
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spectral norm induced by the Euclidean norm, i.e., ‖A‖ ,
(λmax(AAT ))

1
2 , where (·)T denotes the transpose operator

and λmax{·} denotes the largest eigenvalue of the matrix. The
notations det(·) and tr(·) are used to denote the determinant
and trace of the corresponding matrix respectively. If all
elements of a matrix are nonnegative, then it is a nonnegative
matrix, and furthermore if

∑n
j=1 aij = 1 for all i, then it is

called a stochastic matrix. The Kronecker Product A⊗B of
two matrices A = (aij) ∈ Rm×n and B ∈ Rp×q is defined
as

A⊗B =

a11B · · · a1nB
...

. . .
...

an1B · · · annB

 ∈ Rmp×nq.

An undirected weighted graph G = (V, E ,A) is used
to describe the relationship between sensors, where V =
{1, 2, 3, · · · , n} is the set of sensors, the edge set E ∈ V ×V
denotes the communication between sensors, and A = (aij)
is the weighted matrix. The elements of the matrix A satisfy:
aij > 0 if and only if (i, j) ∈ E . The neighbor set of
the sensor i is denoted as Ni = {j ∈ V, (i, j) ∈ E}, and
each sensor can only communicate with its neighbors. A
path of length ` is a sequence of nodes {i1, ...i`} satisfying
(ij , ij+1) ∈ E for all 1 ≤ j ≤ `− 1. The graph G is called
connected if for any two sensors i and j, there is a path
connecting them, and the diameter D(G ) of the graph G
denotes the maximum length of the path between any two
sensors. In this paper, we consider the convergence property
of the distributed SG algorithm under the condition that
the weighted matrix is symmetric and stochastic. Hence,
the Laplacian matrix L of the graph G can be written as
L = I −A with I being the identity matrix.

A classical result for the Laplacian matrix L can be stated
as follows.

Lemma 1 [18] The Laplacian matrix L has at least one zero
eigenvalue, with other eigenvalues positive and less than or
equal to 2. Moreover, if the graph G is connected, then L
has only one zero eigenvalue.

B. Distributed SG Algorithm

In this paper, we consider a network consisting of n
sensors. The signal model of each sensor i ∈ {1, ..., n} is
assumed to obey the following linear stochastic regression
model,

yik+1 = θTϕik + εik+1 k ≥ 0, (1)

where yik is the scalar observation of the sensor i at time
k, {εik} is a random noise process, ϕik is an m-dimension
regression vector of i and usually contains input and output
information, θ is an unknown m-dimensional parameter.

The purpose of this paper is to propose a distributed
algorithm to estimate the unknown parameter θ. For this,
we propose the distributed SG algorithm which combines
the consensus strategy of the estimation of neighbors with
the diffusion of regression vectors. The detailed algorithm
can be found in Table I.

TABLE I
DISTRIBUTED SG ALGORITHM

Given any initial estimates θ̂i0 of each sensor i, the distributed
SG algorithm is given as follows:
Step 1. For any i ∈ {1, ..., n}, set the initial value at each time k :

xik(0) =
‖ϕik‖

2

ri
k

.

Step 2. Perform the following diffusion process for Q steps:
xik(q + 1) =

∑
j∈Ni aijx

j
k(q).

where Q ≥ D(G ) with D(G ) being the diameter of G .
Step 3. After Step 2, update the estimates of each sensor as follow:

zik = xik(Q)
∑

l∈Ni ali(θ̂
i
k − θ̂

l
k),

θ̂ik+1 = θ̂ik + µ
ϕik
ri
k

(yik+1 − (ϕi
k)T θ̂ik)

−µν
∑

j∈Ni aij
(
zik − z

j
k

)
,

rik = 1 +
∑k

j=1

∥∥∥ϕi
j

∥∥∥2.

For convenience of analysis, we introduce the following
notations, see Table II.

TABLE II
SOME NOTATIONS

Notation Definition Dimension
Yk {y1k, ...y

n
k } 1× n

Φk diag{ϕ1
k, ...ϕ

n
k} mn× n

Ξk {ε1k, ...ε
n
k} 1× n

Θ col{θ...θ} mn× 1

Θ̂k col{θ̂1k...θ̂
n
k } mn× 1

Θ̃k col{θ̃1k...θ̃
n
k }, θ̃

i
k = θ − θ̂ik mn× 1

Rk diag{r1k, ...r
n
k } n× n

L L⊗ Im, L is the Laplacian matrix mn×mn
Ak ΦkR

−1
k ΦT

k mn×mn
Xk(Q) diag{x1k(Q), ..., xnk (Q)} n× n
Gk Ak + νL (Xk(Q)⊗ Im)L mn×mn

In order to proceed our theoretical analysis of the conver-
gence property of the distributed SG algorithm, we introduce
the following assumptions concerning the graph, regression
vectors and the system noise.

Assumption 1 The graph G is connected and contains self-
loops at each sensor i, and the weighted matrix A is
symmetric and stochastic.

Assumption 2 (Cooperative Excitation Condition) There
exist two positive constants N and N0 such that for k ≥ N0 ,
the following inequality is satisfied,

λkmax

λkmin

≤ N (log(trRk))
1
3 , (2)

where λkmax, λ
k
min represent the maximum and minimum

eigenvalues of n
mIm +

∑n
i=1

∑k
j=1ϕ

i
jϕ

i
j
T .

Without loss of generality, the constant N0 in Assumption
2 can be taken to satisfy log tr(RN0) ≥ 1.

5083

Authorized licensed use limited to: CAS Academy of Mathematics & Systems Science. Downloaded on June 02,2022 at 09:21:56 UTC from IEEE Xplore.  Restrictions apply. 



Remark 1 In [14], Guo proved that under the following
excitation condition

λmax


k∑
j=1

ϕijϕ
i
j

T

 /λmin


k∑
j=1

ϕijϕ
i
j

T

 ≤ N (log rik
) 1

3 ,

(3)

the convergence of the standard SG algorithm can be guar-
anteed, which can be regarded as the “weakest” excitation
condition in the current literature. Assumption 2 is intro-
duced based on the condition (3), and can be considered as
an extension to the distributed algorithm.

Assumption 3 We assume that the system noise is a mar-
tingale difference sequence, that is, E(Ξk+1|Fk) = 0 with
Fk = σ{ϕij , εij , i = 1, ...n, j ≤ k} and E(·|Fk) being
the conditional mathematical expectation, and there exist
constants c0 > 0 and ε ∈ [0, 1) (which may depend on
ω) such that E(‖Ξk+1‖2|Fk) ≤ c0‖Rk‖ε.

Remark 2 It is clear that if E(‖Ξk+1‖2|Fk) ≤ c0 holds
for all k, then we have E(‖Ξk+1‖2|Fk) ≤ c0‖Rk‖ε.

By (1), we can rewrite the distributed SG algorithm in
Table I into the following matrix form,

Yk+1 = ΘTΦk + Ξk+1,

Θ̂k+1 = Θ̂k + µΦkR
−1
k (Y T

k+1 −ΦT
k Θ̂k)

− µνL (Xk(Q)⊗ Im)L Θ̂k. (4)

Let Θ̃k = Θ− Θ̂k. It is clear that LΘ = 0, then we have

Θ̃k+1 = (I − µGk)Θ̃k − µΦkR
−1
k ΞTk+1. (5)

III. STRONG CONSISTENCY OF PARAMETER ESTIMATES

Let matrix Φ(k, j) be recursively defined by

Φ(k + 1, j) = (Imn − µGk)Φ(k, j), Φ(j, j) = Imn. (6)

In this section, we will establish a necessary and sufficient
condition for strong consistency of the proposed distributed
SG algorithm. For this purpose, we first list some lemmas
whose proofs are omitted due to space limitations.

Lemma 2 Suppose that Assumption 1 is satisfied, If µ >
0, ν > 0 and µ(1 + 4nν) ≤ 1, then we have

0 ≤ µGk ≤ Imn.

Lemma 3 [19] Let Dt , 1 +
∑t
j=1 dj , dj ≥ 0, then

∞∑
j=1

dj
Dα
j

<∞, ∀ α > 1,

∞∑
j=1

dj
Dj

=∞ iff lim
j→∞

Dj =∞.

The following lemma provides the upper bound of the
cumulative summation of the noises, which is an important
step towards the convergence analysis of the algorithm.

Lemma 4 Suppose that Assumption 3 is satisfied, the con-
dition number of Rk is bounded(i.e there exits a positive
constant γ which may depend on the sample ω such that
max
i
rik/min

i
rik ≤ γ), then

∑k
j=0 ΦjR

−1
j ΞTj+1 tends to a

finite limit S as k →∞. Furthermore, there exit two positive
constants c and δ which may depend upon the sample ω such
that ∥∥∥∥∥∥S −

k−1∑
j=0

ΦjR
−1
j ΞTj+1

∥∥∥∥∥∥ ≤ c‖Rk‖−δ. (7)

Lemma 5 Assume that the steps µ and ν satisfy µ(1 +
4nν) ≤ 1, then for any k ≥ 0 the following inequality holds,

k−1∑
j=0

‖Φ(k, j + 1)Bj‖2 ≤ mn,

where B2
j = µGj .

Proof. By (6) and Lemma 2, we have

mn = trΦ(k, k)ΦT (k, k)

≥ tr

k−1∑
j=0

[
Φ(k, j + 1)ΦT (k, j + 1)

−Φ(k, j)ΦT (k, j)
]

= tr

k−1∑
j=0

{
Φ(k, j + 1)

[
Imn −Φ(j + 1, j)

·ΦT (j + 1, j)
]
ΦT (k, j + 1)

}

≥ tr

k−1∑
j=0

Φ(k, j + 1)µGjΦ
T (k, j + 1)

≥
k−1∑
j=0

‖Φ(k, j + 1)Bj‖2,

which completes the proof.
Now, we present the first theorem of the convergence of

the distributed SG algorithm.

Theorem 1 Suppose that the condition number of Rk is
bounded, and µ(1 + 4nν) < 1. Then under Assumptions
1 and 3, for any initial value Θ̂0 the estimate Θ̂k defined
by (4) converges to the true parameter Θ if and only
if Φ(k, 0)→ 0, k →∞.

Proof. By (5) and (6), we have the following expression

Θ̃k+1 = Φ(k + 1, 0)Θ̃0

− µ
k∑
j=0

Φ(k + 1, j + 1)ΦjR
−1
j ΞTj+1. (8)

We first prove the necessity part of the theorem. For
any Θ̃0, we have Θ̃k → 0. Note that the second term on
the right-hand side of (8) is independent of Θ̃0. Thus, for
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any Θ̃0, we have Φ(k + 1, 0)Θ̃0 → 0 as k → ∞, which
means that Φ(k + 1, 0)→ 0 as k →∞.

Now, Let us move on to the sufficiency part. It is clear
that in order to prove the convergence of the algorithm, we
just need to prove

k∑
j=0

Φ(k + 1, j + 1)ΦjR
−1
j ΞTj+1 → 0, k →∞. (9)

Set

Sk =

k∑
j=1

ΦjR
−1
j ΞTj+1, S̃k =

∞∑
j=k+1

ΦjR
−1
j ΞTj+1,

S−1 = 0.

By Lemma 4 we have ‖S̃k−1‖ ≤ c‖Rk‖−δ . Then

‖
k∑
j=0

Φ(k + 1, j + 1)ΦjR
−1
j ΞTj+1‖

= ‖
k∑
j=0

Φ(k + 1, j + 1)(Sj − Sj−1)‖

= ‖Sk −
k∑
j=0

[Φ(k + 1, j + 1)−Φ(k + 1, j)]S

+

k∑
j=0

[Φ(k + 1, j + 1)−Φ(k + 1, j)]S̃j−1‖

= ‖Sk − S + Φ(k + 1, 0)S

+

k∑
j=0

Φ(k + 1, j + 1)[Imn −Φ(j + 1, j)]S̃j−1‖.

By Hölder inequality, the last term of the right hand side
of the above equation can be estimated according to the
following manner,

‖
k∑
j=0

Φ(k + 1, j + 1)[Imn −Φ(j + 1, j)]S̃j−1‖

≤
k∑
j=0

‖Φ(k + 1, j + 1)Bj‖
‖Bj‖
‖Rj‖δ

+

 k∑
j=M+1

‖Φ(k + 1, j + 1)Bj‖2
 1

2

·

 k∑
j=M+1

‖Bj‖2

‖Rj‖2δ

 1
2

. (10)

By Lemmas 3 and 5 we have
∞∑
j=1

‖Bj‖2

‖Rj‖2δ
=

∞∑
j=1

‖Gj‖
‖Rj‖2δ

≤ (1 + 4mnν)

∞∑
j=1

‖Aj‖
‖Rj‖2δ

≤ (1 + 4mnν)

∞∑
j=1

‖Φj‖2‖R−1j ‖
‖Rj‖2δ

≤ (1 + 4mnν)γ

∞∑
j=1

‖Φj‖2

‖Rj‖1+2δ
<∞. (11)

According to (11) and Lemma 5, ‖
∑k
j=0 Φ(k + 1, j +

1)ΦjR
−1
j ΞTj+1‖ tends to zero if we first let k → ∞, and

then let M →∞. Hence (9) holds. This completes the proof
of the theorem.

A key problem still remains unresolved: what conditions
on the regression signals can guarantee that Φ(k, 0) → 0
as k → ∞? In the following, we will prove that under the
cooperative excitation condition (i.e., Assumption 2) we can
establish the convergence results of the distributed algorithm.

We obtain the following results.

Theorem 2 Let µ(1 + 4nν) ≤ 1. Suppose that there exist

i1, i2 ∈ {1, ...n} such that lim supk→∞
r
i1
k

r
i1
k−1

< ∞ , ri2k →
∞, and the condition number of Rk is bounded. Under
Assumptions 1 and 2, we have Φ(k, 0)→ 0, k →∞.

The proof of the theorem is very complicated, and we omit
it due to space limitations.

Remark 3 The above theorem shows that under the cooper-
ative excitation condition, the convergence of the distributed
SG algorithm can be established. Different form most results
in the literature, our results are obtained without using the
independency and stationarity assumptions on the regression
signals, which makes it possible to apply the distributed
algorithm to practical feedback systems.

IV. CONVERGENCE RATE OF THE DISTRIBUTED SG
ALGORITHM

In this section, we will consider the convergence rate of
the proposed algorithm.

Lemma 6 If µ(1 + 4nν) < 1, then there exists a constan-
t τ1 > 1 such that for any k ≥ 0, we have

det(Imn − µGk) ≥ [det(Imn −Ak)]τ1 .

Proof. By the definition of Gk, we have

det(Imn − µGk) ≥ (λmin(Imn − µGk))mn

≥ (1− λmax(µ(1 + 4nν)Ak))mn

≥ [det(I − µ(1 + 4nν)Ak)]
mn

≥ [det(I −Ak)]
mn

.

The lemma can be proved by taking τ1 = mn.

Lemma 7 If µ(1 + 4nν) < 1 , then we have the following
inequalities,

(i) ‖Φ(k, j)‖ ≤ 1, 0 ≤ j ≤ k, k ≥ 0;

(ii)
1

‖Rk‖τ1
= O(‖Φ(k + 1, 0)‖2m) , ∀k ≥ 1 ;
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(iii) ‖Φ(k, j + 1)‖ = O(‖Φ(k, 0)‖ · ‖Rj‖nτ1),∀k ≥ j;

(iv)

∞∑
j=M+1

‖Φj‖2

‖Rj‖1+δ
≤ n1+δ

δ

1

‖RM‖δ
, ∀k ≥ 0.

The proof of this Lemma is based on Lemma 6.

Theorem 3 Under the conditions of Theorem 1, then we
have

‖Θ̂k −Θ‖ = O(‖Φ(k, 0)‖
δ

nτ1(1+δ) ) a.s. as k →∞

Proof. Let

α(t) = max{j : ‖Rj‖nτ1 ≤ t}, t ≥ 0,

λ(k) = α(‖Φ(k, 0)‖−
1

1+δ ), k ≥ 0.

By the definition of α(t) and λ(k), we have ‖Rα(t)‖nτ1 ≤ t,
and hence ‖Rλ(k)‖nτ1 ≤ ‖Φ(k, 0)‖−

1
1+δ .

According to Lemma 7 (iii), we have

‖Φ(k, λ(k) + 1)‖ = O(‖Φ(k, 0)‖ · ‖Rλ(k)‖nτ1)

= O(Φ(k, 0)
δ

1+δ ).

Thus for large k, we have λ(k) < k − 1. By Theorem 1,
then we have the following estimation on the noise of the
system,

‖
k−1∑
j=0

Φ(k, j + 1)ΦjR
−1
j ΞTj+1‖

≤ ‖S̃k−1‖+ ‖Φ(k, 0)S‖+ c

k−1∑
j=0

‖Φ(k, j + 1)‖ · ‖µGj‖
‖Rj‖δ

= O(‖Rλ(k)+1‖−δ) +O(‖Φ(k, 0)‖)

+O(

k−1∑
j=0

‖Φ(k, j + 1)‖ · ‖Φj‖2

‖Rj‖1+δ
). (12)

Now, we are in a position to estimate the last term of the
right hand side of the above inequality. By Lemma 7, we
have

k−1∑
j=0

‖Φ(k, j + 1)‖ · ‖Φj‖2

‖Rj‖1+δ

≤
λ(k)∑
j=0

‖Φ(k, λ(k) + 1)‖ · ‖Φ(λ(k) + 1, j + 1)‖ · ‖Φj‖2

‖Rj‖1+δ

+

k−1∑
j=λ(k)+1

‖Φ(k, j + 1)‖ · ‖Φj‖2

‖Rj‖1+δ

= O(‖Φ(k, 0)‖
δ

1+δ )

∞∑
j=0

‖Φj‖2

‖Rj‖1+δ
+

k−1∑
j=λ(k)+1

‖Φj‖2

‖Rj‖1+δ

≤ O(‖Φ(k, 0)‖
δ

1+δ ) +
‖Φλ(k)+1‖2

‖Rλ(k)+1‖1+δ
+

∞∑
j=λ(k)+2

‖Φj‖2

‖Rj‖1+δ

= O(‖Φ(k, 0)‖
δ

nτ1(1+δ) ). (13)

Combining the above inequality with (8) and (12), then we
have

Θ̃k = O(‖Φ(k, 0)‖
δ

nτ1(1+δ) ) a.s. as k →∞, (14)

where ‖Φ(k, 0)‖ ≤ 1 is used in the above inequality. This
completes the proof of the theorem.

Theorem 4 Under the conditions of Theorem 3, If Assump-
tion 2 is also satisfied, and there exists i1 ∈ {1, ..., n}, such

that lim supk→∞
r
i1
k

r
i1
k−1

<∞, then

Θ̃k = O((log ‖Rk‖)−δ1) δ1 > 0 a.s. as k →∞ (15)

V. CONCLUDING REMARKS
In order to cooperatively estimate an unknown time-

invariant parameter, we proposed a distributed SG algorithm
based on the consensus strategies and the diffusion of the
regression vectors. We introduced the cooperative excitation
condition, under which the convergence of the proposed
algorithm can be proved, and the convergence rate of the
algorithm can be established. Moreover, we extend the
convergence results to the case with correlated noise. In
comparison with the existing results in the literature, our
results are obtained without relying on the independency and
stationarity assumptions. Many interesting problems deserve
to be further investigated, for example, how to remove the
boundedness of the condition number of Rk, the analysis
of other distributed algorithms such as distributed Kalman
filter and distributed forgetting factor least square algorithm,
and the combination of the distributed estimation with the
distributed control.
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