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a b s t r a c t

This paper considers the distributed sparse identification problem over wireless sensor networks
such that all sensors cooperatively estimate the unknown sparse parameter vector of stochastic
dynamic systems by using the local information from neighbors. A distributed sparse least squares
algorithm is proposed by minimizing a local information criterion formulated as a linear combination
of accumulative local estimation error and L1-regularization term. The upper bound of the estimation
error of the proposed algorithm is presented. Furthermore, by designing a suitable adaptive weighting
coefficient based on the local observation data, the set convergence of zero elements with a finite
number of observations is obtained under a cooperative non-persistent excitation condition. It is shown
that the proposed distributed algorithm can work well in a cooperative way even though none of the
individual sensors can fulfill the estimation task. Our theoretical results are obtained without relying
on the independency assumptions of regression signals that have been commonly used in the existing
literature. Thus, our results are expected to be applied to stochastic feedback systems. Finally, the
numerical simulations are provided to demonstrate the effectiveness of our theoretical results.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, wireless sensor networks (WSNs) have at-
racted increasing research attention because of their wide appli-
ation in engineering systems including smart grids, biomedical
ealth monitoring, target tracking and surveillance (Sayed et al.,
013). Distributed observation and data analysis are ubiquitous in
SNs, where sensors are interconnected to acquire and process

he local information from neighbors to finish a common task.
ue to various uncertainties in practical systems, the distributed
dentification problem over WSNs becomes one of the important
opics where all the sensors collaboratively estimate an unknown
arameter vector of interest by using local noisy measurements.

✩ This work was supported by the National Key R&D Program of China
under Grant 2018YFA0703800, Natural Science Foundation of China under Grant
T2293770, China Postdoctoral Science Foundation, China (2022M722926) and
National Science Foundation of Shandong Province (ZR2020ZD26). The material
in this paper was not presented at any conference. This paper was recommended
for publication in revised form by Associate Editor Er-Wei Bai under the direction
of Editor Alessandro Chiuso.

∗ Corresponding author at: Key Laboratory of Systems and Control, Institute
f Systems Science, Academy of Mathematics and Systems Science, Chinese
cademy of Sciences, Beijing 100190, PR China.

E-mail addresses: gandie@amss.ac.cn (D. Gan), lzx@amss.ac.cn (Z. Liu).
ttps://doi.org/10.1016/j.automatica.2023.110958
005-1098/© 2023 Elsevier Ltd. All rights reserved.
Unlike the centralized method with a fusion center, the dis-
tributed scheme has the advantages of flexibility, robustness to
node or link failures as well as reducing communication load
and calculation pressure. Consequently, the theoretical analysis
of distributed estimation or filtering algorithms based on several
typical distributed strategies such as the incremental, the diffu-
sion and the consensus strategies have been provided (Abdolee &
Champagne, 2016; Battilotti et al., 2020; Liu et al., 2020).

In practical scenarios, there exist a large number of sparse
systems (Bazerque & Giannakis, 2010; Vinga, 2021) where many
elements in the parameter vector do not contribute or contribute
marginally to the systems (i.e., these elements are zero or near-
zero). How to infer the zero elements and identify the nonzero
elements in the unknown parameter vector is an important issue
in the investigation of sparse systems. Considerable progress has
been made on the identification of zero and nonzero elements
in an unknown sparse parameter vector (Chiuso & Pillonetto,
2014; Eksioglu, 2013; Zhao & Yu, 2006), which allows us to
obtain a more reliable prediction model. One direction for the
estimation of sparse signals is based on the compressed sensing
(CS) theory (Baraniuk, 2007; Candès & Tao, 2005), and some
estimation algorithms using CS are proposed (cf., Gan and Liu
(2022b), Xie and Guo (2020) and Xu et al. (2015)) in which a
priori knowledge about the sparsity of the unknown parameter
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nd the regression vectors are required. Another direction is
he sparse optimization based on the regularization framework
here the objective function is formulated as a combination of
he prediction error with a penalty term. The well-known LASSO
the least absolute shrinkage and selection operator) is one of
he classical algorithms to obtain the sparse signals (Tibshirani,
996), and its variants and adaptive LASSO (Zou, 2006) are also
tudied. For the stochastic dynamic systems with a single sensor,
he adaptive sparse estimation or filtering algorithms are studied
y combining the recursive least squares (LS) and least mean
quares (LMS) with regularization term (Chen et al., 2009; Zhao
t al., 2020).
With the development of sensor networks, some distributed

daptive sparse estimation algorithms have been proposed, and
he corresponding stability and convergence analysis are also in-
estigated under some signal conditions. For example, Di Lorenzo
nd Sayed (2013) provided the convergence and mean-square
erformance analysis for the distributed LMS algorithm regular-
zed by convex penalties where the assumption of independent
egressors is required. Huang and Li (2015) presented theoretical
nalysis on the mean and mean-square performance of the dis-
ributed sparse total LS algorithm under the condition that the
nput signals are independent and identically distributed (i.i.d.).
hiri et al. (2018) analyzed the mean stability of distributed quasi-
parse affine projection algorithm with independent regression
ectors. Huang et al. (2020) analyzed the mean stability of the
parse diffusion LMS algorithm for two regularization terms with
ndependent regression vectors. However, for the typical models
uch as ARMAX (autoregressive moving-average with exogenous
nput) model and Hammerstein system, the regressors are often
enerated by the past input and output signals, so it is hard for
hem to satisfy the aforementioned independency assumptions.

In order to relax the independency assumption of the regres-
ors, some attempts are made for the distributed adaptive esti-
ation or filtering algorithms. For the unknown time-invariant
arameter vector, Gan and Liu (2019) proposed a distributed
tochastic gradient algorithm, and established the strong consis-
ency of the proposed algorithm under a cooperative excitation
ondition. Xie et al. (2021) studied the convergence of the dif-
usion LS algorithm. For the time-varying parameter vector, Xie
nd Guo (2018) provided a cooperative information condition
o guarantee the stability of the consensus-based LMS adaptive
ilters. Moreover, Gan et al. (2021) introduced the collective ran-
om observability condition and provided the stability analysis
f the distributed Kalman filter algorithm. Nevertheless, these
symptotical results are established as the number of the ob-
ervation data obtained by sensors tends to infinity, which may
ot be suitable for the sparse identification problem with limited
bservation data. Kaiser et al. (2018) combined sparse identifi-
ation of nonlinear dynamics with model predictive control in
imited data for the single sensor case. The effectiveness of the
roposed method was verified by some experiments without
igorous theoretical analysis.

Inspired by Zhao et al. (2020) where a sparse identification
lgorithm for a single sensor case is put forward to infer the set of
ero elements with finite observations, we develop a distributed
daptive sparse LS algorithm over sensor networks such that all
ensors can cooperatively identify the unknown parameter vector
nd infer the zero elements with a finite number of observations.
he main contributions can be summarized as follows:

• We first introduce a local information criterion for each
sensor which is formulated as a linear combination of local
estimation errors with L1-regularization term. By minimiz-
ing this criterion, a distributed adaptive sparse identification
algorithm is proposed. The upper bound of the estimation
error is established, which can be degenerated to the results
of the classical distributed LS algorithm (Xie et al., 2021)
when the weighting coefficients are equal to zero.
2

• Then, we introduce a cooperative non-persistent excitation
condition on the regressors, under which the distributed
sparse LS algorithm can cooperatively identify the set of zero
elements with finite observations by properly choosing the
weighting coefficients. We remark that the key difference
between the proposed algorithm and those in distributed
sparse optimization framework (e.g., Di Lorenzo and Sayed
(2013)) lies in that the weighting coefficients are generated
from the local observation sequences. The cooperative exci-
tation condition is much weaker than the widely used per-
sistent excitations (cf., Chen et al. (2015, 2014) and Zhang
et al. (2021)) and the regularity condition (Zou, 2006).

• Different from most existing results on the distributed
sparse algorithms, our theoretical results are obtained with-
out relying on the independency assumptions of regression
signals by virtue of powerful techniques including mar-
tingale theory, stochastic Lyapunov functions and convex
optimization methods, which makes it possible for applica-
tions to the stochastic feedback systems. We also reveal that
the whole sensor network can cooperatively accomplish the
estimation task, even if any individual sensor cannot due to
lack of necessary information (Zhao et al., 2020).

The remainder of this paper is organized as follows. In Sec-
tion 2, we give the problem formulation of this paper; Section 3
presents the main results of the paper; the proofs of the main
results are given in Section 4. A simulation example is provided
in Section 5. Finally, we conclude the paper with some remarks
in Section 6.

2. Problem formulation

2.1. Basic notations

In this paper, for an m-dimensional vector x, its Lp-norm is
defined as ∥x∥p = (

∑m
j=1 |x(j)|p)1/p (1 ≤ p < ∞), where x(j)

denotes the jth element of x. For p = 1, ∥x∥1 is the sum of
absolute values of all the elements in x; and for p = 2, ∥x∥2 is
the Euclidean norm, we simply write ∥ · ∥2 as ∥ · ∥. For an m×m-
dimensional real matrix A, we use λmax(·) and λmin(·) to denote
the largest and smallest eigenvalues of the matrix. ∥A∥ denotes
the Euclidean norm, i.e., ∥A∥ = (λmax(AAT ))

1
2 where the notation

T denotes the transpose operator; ∥A∥F denotes the Frobenius
norm, i.e., ∥A∥F = (tr(ATA))

1
2 , where the notation tr(·) denotes

the trace of the corresponding matrix. For a symmetric matrix
A, if all eigenvalues of A are positive (or nonnegative), then it
is a positive (semipositive) definite matrix, and we denote it as
A > 0 (≥ 0). If all elements of a matrix A = {aij} ∈ Rn×n are
nonnegative, then it is a nonnegative matrix, and furthermore
if
∑n

j=1 aij = 1 holds for all i ∈ {1, . . . , n}, then it is called a
tochastic matrix. For any two positive scalar sequences {ak} and

{bk}, by ak = O(bk) we mean that there exists a constant C > 0
independent of k such that ak ≤ Cbk holds for all k ≥ 0, and by
ak = o(bk) we mean that limk→∞ ak/bk = 0.

2.2. Graph theory

We consider a sensor network with n sensors. The commu-
nication between sensors are usually modeled as an undirected
weighted graph G = (V, E , A), where V = {1, 2, 3, . . . , n} is
the set of sensors (or nodes), E ⊆ V × V is the edge set, and
A = {aij} ∈ Rn×n is the weighted adjacency matrix. The elements
of the adjacency matrix A satisfy aij > 0 if (i, j) ∈ E and aij = 0
otherwise. Here we assume that the matrix A is a symmetric
and stochastic matrix. For the sensor i, the set of its neighbors is
denoted as N = {j ∈ V|(i, j) ∈ E}, and the sensor i belongs to N .
i i
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he sensor i can communicate information with its neighboring
sensors. A path of length ℓ is a sequence of nodes {i1, . . . , iℓ, iℓ+1}

uch that (ih, ih+1) ∈ E with 1 ≤ h ≤ ℓ. The graph G is
called connected if there is a path between any two sensors. The
diameter DG of the graph G is defined as the maximum shortest
ath length between any two sensors.

.3. Observation model

In this paper, we consider the parameter identification prob-
em in a network consisting of n sensors labeled 1, . . . , n. Assume
hat the data {yt,i, ϕt,i, t = 1, 2, . . .} collected by the sensor i
beys the following discrete-time stochastic regression model,

t+1,i = ϕT
t,iθ + wt+1,i, t = 0, 1, 2, . . . , (1)

here yt,i is the scalar observation or output of the sensor i at
ime t , ϕt,i is the m-dimensional stochastic regression vector, θ ∈
m is an unknownm-dimensional parameter to be estimated, and
wt,i} is the noise sequence. The above model (1) includes many
arameterized systems, such as ARX system and Hammerstein
ystem. We further denote the parameter vector θ and the index
et of its zero elements by

θ ≜ (θ(1), . . . , θ(m))T ,
∗ ≜ {l ∈ {1, . . . ,m}|θ(l) = 0}.

(2)

Our problem is to design a distributed adaptive estimation
lgorithm such that all sensors cooperatively infer the set H∗ in
finite number of steps and identify the unknown parameter θ
y using stochastic regression vectors and the observation signals
rom its neighbors, i.e., {ϕk,j, yk+1,j}

t
k=1 (j ∈ Ni).

. The main results

.1. Parameter convergence

Before designing the algorithm to cooperatively estimate the
nknown parameter vector and infer the set H∗, we first intro-
uce the following classical distributed least squares algorithm
o estimate the unknown parameter θ in (2), i.e.,

t+1,i = P t+1,i

( n∑
j=1

t∑
k=0

a(t+1−k)
ij ϕk,jyk+1,j

)
, (3)

where P t+1,i =

(∑n
j=1
∑t

k=0 a
(t+1−k)
ij ϕk,jϕ

T
k,j

)−1
and a(t+1−k)

ij is the
ith row, jth column entry of the matrix At+1−k with A being the
weighted adjacency matrix. It is clear that the matrix P t+1,i can
be equivalently written as the following recursive form,

P−1
t+1,i =

∑
j∈Ni

aij(P−1
t,j + ϕt,jϕ

T
t,j). (4)

Thus, the algorithm (3) can also have the following recursive
expression,

θt+1,i = P t+1,i

∑
j∈Ni

aij(P−1
t,j θt,j + ϕt,jyt+1,j). (5)

Note that in the above derivation, we use the inverse of the
matrix

∑n
j=1
∑t

k=0 a
(t+1−k)
ij ϕk,jϕ

T
k,j which is usually not satisfied

for small t . To solve this problem, we take the initial matrix P0,i
to be positive definite. By (4), we have

P−1
t+1,i =

n∑
j=1

t∑
k=0

a(t+1−k)
ij ϕk,jϕ

T
k,j +

n∑
j=1

a(t+1)
ij P−1

0,j . (6)

This modification will not affect the analysis of the asymptotic
properties of the estimate of the distributed least squares algo-
rithm.
3

In fact, the algorithm (5) can be obtained by minimizing the
following linear combination of the estimation error σt+1,i(β)
between the observation signals and the prediction of the local
neighbors,

σt+1,i(β) =

∑
j∈Ni

aij

(
σt,j(β) + [yt+1,j − βTϕt,j]

2
)

, (7)

with σ0,i(β) = 0. That is, θt+1,i ≜ argminβ σt+1,i(β).
By a simple calculation, (7) is equivalent to

σt+1,i(β) =

n∑
j=1

t∑
k=0

a(t+1−k)
ij [yk+1,j − βTϕk,j]

2. (8)

It is shown by Xie et al. (2021) that the distributed least
squares algorithm (5) can generate a consistent estimate for the
unknown parameter when the number of data tends to infinity.
However, for the sparse unknown parameter vectors (i.e., there
are many zero elements in θ), it is hard to infer the zero elements
in a finite step due to the limitation of observations in practice. In
order to solve this issue, we introduce the following local infor-
mation criterion with L1-regularization to identify the unknown
parse parameters and infer the set H∗,

t+1,i(β) = σt+1,i(β) + αt+1,i∥β∥1, (9)

here ∥·∥1 is the L1-norm, αt+1,i is the weighting coefficient cho-
en to satisfy αt+1,i = o(λmin(P−1

t+1,i)), and σt+1,i(β) is recursively
efined by (7). For the sensor i, we can obtain the following dis-
ributed sparse LS algorithm to estimate the unknown parameter
by minimizing Jt+1,i(β), i.e.,

t+1,i = argmin
β

Jt+1,i(β). (10)

emark 1. We know that the L0-regularization methods are
deal for variable selection in the sense of yielding the most
parse variables, but the computational complexity for solving L0
inimization problem is NP-hard in general (cf., Candès and Tao

2005)). For L2-regularization methods, the objective functions
re smooth, but the solutions of L2-regularization do not possess
he sparse property. While the L1-regularization can generate the
parse solutions, and it leads to a convex optimization problem
hat is easy to be solved by using the typical algorithms such
s basic pursuit and interior-point algorithms (see e.g., Gill et al.
2011) and Kim et al. (2007)).

emark 2. For the sensor i, the coefficients αt+1,i in (9) can
e dynamically adjusted by using the local observation sequence
ϕk,j, yk+1,j, j ∈ Ni}

t
k=1, which makes (9) be the adaptive LASSO

cf., Zou (2006)). We show that by properly choosing the co-
fficient αt+1,i, we can identify the set of the zero elements in
he unknown sparse parameter vector θ with a finite number of
observations (see Theorem 2).

In the following, we will first investigate the upper bound
of the estimation error generated by (10), which provides the
basis for the set convergence of zero elements. For this purpose,
we need to introduce the following assumptions on the network
topology and the observation noise.

Assumption 1. The communication graph G is connected.

Remark 3. For the weighted adjacency matrix A of the graph
G, we denote Al ≜ (a(l)ij ) with l ≥ 1. By the theory of product
of stochastic matrices, we see that under Assumption 1, Al is a
positive matrix for l ≥ D , i.e., for any i and j, a(l) > 0.
G ij
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ssumption 2. For any i ∈ {1, . . . , n}, the noise sequence
wk,i, Fk} is a martingale difference, and there exists a constant
> 2 such that supk≥0 E[|wk+1,i|

δ
|Fk] < ∞, a.s., where Ft =

{ϕk,i, wk,i, k ≤ t, i = 1, . . . , n} is a sequence of nondecreas-
ng σ -algebras and E[·|·] denotes the conditional expectation
perator.

We can verify that the i.i.d. zero-mean bounded or Gaussian
oise {wk,i} which are independent of the regressors can satisfy
ssumption 2.
Assume that there are d nonzero elements in the unknown

arameter vector θ. Without loss of generality, we assume θ =

θ(1), . . . , θ(d), θ(d + 1), . . . , θ(m))T with θ(l) ̸= 0, l = 1, . . . , d,
nd θ(j) = 0, j = d+1, . . . ,m. For the estimate βt+1,i obtained by
he distributed sparse LS algorithm (10), we denote the estimate
rror as

t+1,i = βt+1,i − θ. (11)

hen we have the following result concerning the upper bound
f the estimation error β̃t,i.

heorem 1. Let P−1
t+1,i be generated by (4) with arbitrarily initial

atrix P0,i > 0. Then under Assumptions 1 and 2, we have for all
∈ {1, . . . , n}

β̃t+1,i∥ = O
( αt+1,i

λmin(P−1
t+1,i)

+

√
log rt

λmin(P−1
t+1,i)

)
, a.s. (12)

where rt =
∑n

i=1
∑t

k=0 ∥ϕk,i∥
2.

The proof of Theorem 1 is provided in Section 4.1.

Remark 4. By (6), we have for t ≥ DG ,

λmin(P−1
t+1,i) ≥ aminλ

n,t
min, (13)

where amin ≜ mini,j∈V a(DG )
ij > 0 and λ

n,t
min = λmin

{∑n
j=1 P

−1
0,j +∑n

j=1
∑t−DG+1

k=0 ϕk,jϕ
T
k,j

}
. From Theorem 1, if the coefficient αt+1,i

is chosen to satisfy αt+1,i = o(λmin(P−1
t+1,i)) and the regression

vectors satisfy the weakest possible cooperative excitation con-
dition log rt = o(λn,t

min) (cf., Xie et al. (2021)), then the almost
sure convergence of the distributed sparse LS algorithm can be
obtained, i.e., βt+1,i −−−→

t→∞
θ. Theorem 1 can be degenerated to

the results of the classical distributed LS algorithm in Xie et al.
(2021) when αt+1,i is equal to zero.

3.2. Set convergence

In last subsection, we have obtained the asymptotic results
concerning the parameter convergence. In the following, we in-
troduce the cooperative non-persistent excitation condition to
study the convergence of the sets of zero elements in the un-
known sparse parameter vector with a finite number of obser-
vations, which is different from the asymptotic analysis given in
last subsection.

Assumption 3 (Cooperative Non-persistent Excitation Condition).
The following condition is satisfied,

rt
λ
n,t
min

√
log(rt )
λ
n,t
min

−−−→
t→∞

0, a.s. (14)

here rt and λ
n,t
min are respectively defined in Theorem 1 and

emark 4.
4

Remark 5. For the single sensor case with n = 1 and DG = 1,
he condition (14) reduces to the excitation condition given by
hao et al. (2020). Assumption 3 reveals the cooperative effect of
ultiple sensors in the sense that the condition (14) can make

t possible for Algorithm 1 to estimate the unknown parameter θ
nd the sets of zero elements by the cooperation of multiple sen-
ors even if any individual sensor cannot due to lack of adequate
xcitation, which is also shown in the simulation example given
n Section 5.

Inspired by Zhao et al. (2020), we propose the following dis-
ributed sparse adaptive algorithm (Algorithm 1) to identify the
et of zero elements with a finite number of observations by
hoosing αt,i adaptively.

Algorithm 1
Step 1: Based on {ϕk,j, yk+1,j}

t
k=0 (j ∈ Ni), begin with an initial

ector θ0,i and an initial matrix P0,i > 0, (i = 1, 2..., n), compute
the matrix P−1

t+1,i defined by (4) and the local estimate θt+1,i of θ

by (5), and further compute θ̂t+1,i(l) according to

θ̂t+1,i(l)

= θt+1,i(l) + sgn(θt+1,i(l))

√ log(λmax(P−1
t+1,i))

λmin(P−1
t+1,i)

, (15)

tep 2: Choose a positive sequence {αk,i}
t+1
k=1 satisfying

k,i = o(λmin(P−1
k,i )),

max(P−1
k,i )

√ log(λmax(P−1
k,i ))

λmin(P−1
k,i )

= o(αk,i). (16)

Step 3: Optimize the convex local objective function,

J̄t+1,i(ξ) = σt+1,i(ξ) + αt+1,i

m∑
l=1

1

|θ̂t+1,i(l)|
|ξ(l)| (17)

ith σt+1,i(ξ) defined in (7), and obtain

ξt+1,i = (ξt+1,i(1), · · · , ξt+1,i(m))T

≜ argmin
ξ

J̄t+1,i(ξ), (18)

Ht+1,i ≜ {l = 1, · · · ,m|ξt+1,i(l) = 0}. (19)

In fact, αk,i in Step 2 can be taken as√λmax(P−1
k,i )λmin(P−1

k,i )

√ log(λmax(P−1
k,i ))

λmin(P−1
k,i )

ince by Assumption 3, (6) and (12) we have

λmax(P−1
k,i )

λmin(P−1
k,i )

√ log(λmax(P−1
k,i ))

λmin(P−1
k,i )

= o(1).

n the convex objective function (17), different components in
are assigned different weights, which is an adaptive LASSO

stimator since the weights αt+1,i/θ̂t+1,i(l) are generated from the
ocal observation sequence {ϕk,j, yk+1,j, j ∈ Ni}

t
k=1. The θ̂t+1,i(l)

ppearing in the denominator satisfies that |θ̂t+1,i(l)| ≥

log(λmax(P−1
t+1,i))

λmin(P
−1
t+1,i)

> 0, which makes (17) well defined. Moreover, if

θ̂ (l) → 0 for some l = 1, . . . ,m and hence 1/θ̂ (l) → ∞,
t+1,i t+1,i
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hen the corresponding minimizer ξt+1,i(l) should be exactly zero.
his provides an intuitive explanation for the sparse solution of
lgorithm 1 with a finite number of observations. The set Ht+1,i

generated from the convex optimization problem (18) serves as
the estimate for the set H∗ defined in (2).

For the set Ht,i obtained by (19), we get the following finite
time convergence result, which shows that the set of zero ele-
ments in θ can be correctly identified with a finite number of
observations.

Theorem 2 (Set Convergence). Under Assumptions 1–3, if log rt =

O(log rt−DG+1), then there exists a positive integer T0 (which may
depend on the sample ω) such that for all i ∈ {1, . . . , n}

ξt+1,i(d + 1) = · · · = ξt+1,i(m) = 0, t ≥ T0.

That is, Ht+1,i = H∗ for t ≥ T0, where H∗ and Ht+1,i are defined in
(2) and (19).

The detailed proof of Theorem 2 is given in Section 4.2.

Remark 6. The condition log(rt ) = O(log(rt−DG+1)) of Theo-
rem 2 means that the growth rate of regression vector is not
explosive. For some typical cases of regression vectors {ϕi

k} such
as the bounded sequence or even sequences with exponential
growth rate, and the i.i.d. sequence, the condition log(rt ) =

O(log(rt−DG+1)) can be easily verified.

Remark 7. From Theorem 2 (also Theorem 1), we see that
the parameter convergence and set convergence results in this
paper are derived without using the independency assumption
on the regression vectors, which makes it possible to apply our
algorithm to practical feedback systems.

4. Proofs of the main results

In order to prove the main theorems of the paper, we first give
the following preliminary lemma (Gan & Liu, 2022a; Xie et al.,
2021).

Lemma 1. Under Assumptions 1 and 2, we have the following
results for all i,

(1)
n∑

i=1

∥̃θt,i∥
2

= O
(
log rt
λ
n,t
min

)
,

(2)
P 1

2
t,i

⎛⎝ n∑
j=1

t∑
k=0

a(t+1−k)
ij ϕk,jwk+1,j

⎞⎠ = O(
√
log(rt )).

here θ̃t+1,i ≜ θt+1,i − θ is the estimation error of the classical
istributed LS algorithm (5).

.1. Proof of Theorem 1

roof. By noting that βt+1,i is the minimizer of Jt+1,i(β), it follows
hat

≥ Jt+1,i(βt+1,i) − Jt+1,i(θ)

= Jt+1,i (̃βt+1,i + θ) − Jt+1,i(θ). (20)

ince θ(j) = 0, j = d + 1, . . . ,m, by (1), (8) and (9), we have

t+1,i (̃βt+1,i + θ) =

n∑
j=1

t∑
k=0

a(t+1−k)
ij [wk+1,j − β̃

T
t+1,iϕk,j]

2

+ αt+1,i

d∑
|̃βt+1,i(l) + θ(l)| + αt+1,i

m∑
|̃βt+1,i(l)| =
l=1 l=d+1

5

n∑
j=1

t∑
k=0

a(t+1−k)
ij w2

k+1,j + β̃
T
t+1,i

t∑
k=0

a(t+1−k)
ij ϕk,jϕ

T
k,jβ̃t+1,i

− 2̃β
T
t+1,i

n∑
j=1

t∑
k=0

a(t+1−k)
ij ϕk,jwk+1,j

+ αt+1,i

d∑
l=1

|̃βt+1,i(l) + θ(l)| + αt+1,i

m∑
l=d+1

|̃βt+1,i(l)|. (21)

Similarly, we have

Jt+1,i(θ)

=

n∑
j=1

t∑
k=0

a(t+1−k)
ij [yk+1,j − θTϕk,j]

2
+ αt+1,i

d∑
l=1

|θ(l)|

=

n∑
j=1

t∑
k=0

a(t+1−k)
ij w2

k+1,j + αt+1,i

d∑
l=1

|θ(l)|. (22)

Hence by (21) and (22), we have

Jt+1,i (̃βt+1,i + θ) − Jt+1,i(θ)

≥ β̃
T
t+1,i

t∑
k=0

a(t+1−k)
ij ϕk,jϕ

T
k,jβ̃t+1,i

− 2̃β
T
t+1,i

n∑
j=1

t∑
k=0

a(t+1−k)
ij ϕk,jwk+1,j

+ αt+1,i

d∑
l=1

(|̃βt+1,i(l) + θ(l)| − |θ(l)|)

≜ M (1)
t+1,i − 2M (2)

t+1,i + M (3)
t+1,i. (23)

In the following, we estimate M (1)
t+1,i, M

(2)
t+1,i and M (3)

t+1,i separately.

Denote V t+1,i = P
−

1
2

t+1,iβ̃t+1,i. By Lemma 1, we have

|M (2)
t+1,i| =

⏐⏐⏐̃βT
t+1,iP

−
1
2

t+1,iP
1
2
t+1,i

n∑
j=1

t∑
k=0

a(t+1−k)
ij ϕk,jwk+1,j

⏐⏐⏐
= O

(√
log(rt )

)
∥V t+1,i∥.

Hence, there exists a positive constant c1 such that for large t ,
M (1)

t+1,i−2M (2)
t+1,i ≥

∥V t+1,i∥
2

2 −c1
√
log(rt )∥V t+1,i∥. By Cr -inequality,

e have |M (3)
t+1,i| ≤ αt+1,i

∑d
l=1 |̃βt+1,i(l)| ≤ αt+1,i

√
d∥̃βt+1,i∥.

ence by (20) and (23), we have for large t , 0 ≥
∥V t+1,i∥

2

2 −

1
√
log(rt )∥V t+1,i∥ −

√
dαt+1,i∥̃βt+1,i∥, which implies that

∥V t+1,i∥ ≤

√
c21 log rt + 2

√
dαt+1,i∥̃βt+1,i∥ +

√
c1 log rt . Note that

∥V t+1,i∥
2

≥ λmin(P−1
t+1,i)∥̃βt+1,i∥

2. Hence we obtain(
∥̃βt+1,i∥ −

2
√
dαt+1,i

λmin(P−1
t+1,i)

)2

≤

(
2
√
dαt+1,i

λmin(P−1
t+1,i)

)2

+
(2c21 + 2c1) log rt

λmin(P−1
t+1,i)

. (24)

Thus, we have ∥̃βt+1,i∥ = O
(

αt+1,i

λmin(P
−1
t+1,i)

+

√
log rt

λmin(P
−1
t+1,i)

)
, which

completes the proof of the theorem. □

4.2. Proof of Theorem 2

Proof. Denote the estimation error between ξt+1,i obtained by
Algorithm 1 and θ as ξ̃ = ξ − θ. By Assumption 3 and
t+1,i t+1,i
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emma 1, we see that the limits of θt+1,i(l) and θ̂t+1,i(l), l =

, . . . , d are nonzero. Similar to the proof of Theorem 1, we can

btain ∥̃ξt+1,i∥ = O
(

αt+1,i

λmin(P
−1
t+1,i)

+

√
log rt

λmin(P
−1
t+1,i)

)
. By the definition

f ξ̃t+1,i, it suffices to prove that there exists a positive integer T0
uch that for all i ∈ {1, . . . , n}, ξ̃t+1,i(d + 1) = · · · = ξ̃t+1,i(m) =

, t ≥ T0. Otherwise, if for some sl ∈ {d + 1, . . . ,m}, some
ensor i0, and some subsequence {tp}p≥1 such that ξ̃tp+1,i0 (sl) ̸= 0,
≥ 1. Thus for p ≥ 1, we have ∥̃ξtp+1,i0∥ > 0. Denote ξ̃tp+1,i0 =

ξ̃
(1)T
tp+1,i0 , ξ̃

(2)T
tp+1,i0 )

T and ξ̄tp+1,i0 = (̃ξ
(1)T
tp+1,i0 , 0

T )T , where ξ̃
(1)
tp+1,i0 ∈ Rd

and ξ̃
(2)
tp+1,i0 ∈ Rm−d. By noting that ξtp+1,i0 is the minimizer of

J̄tp+1,i0 (ξ) defined by (17), it follows that

0 ≥ J̄tp+1,i0 (ξtp+1,i0 ) − J̄tp+1,i0 (θ + ξ̄tp+1,i0 )

= J̄tp+1,i0 (θ + ξ̃tp+1,i0 ) − J̄tp+1,i0 (θ + ξ̄tp+1,i0 ). (25)

Denote ϕk,j ≜ (ϕ(1)T
k,j , ϕ

(2)T
k,j )T and

Ψ t+1,i =

n∑
j=1

t∑
k=0

a(t+1−k)
ij ϕk,jϕ

T
k,j ≜

(
Ψ (11)

t+1,i Ψ (12)
t+1,i

Ψ (21)
t+1,i Ψ (22)

t+1,i

)
.

Similar to (21), we have for ξ̃tp+1,i0

J̄tp+1,i0 (θ + ξ̃tp+1,i0 ) −

n∑
j=1

tp∑
k=0

a(tp+1−k)
i0j

w2
k+1,j

= −2̃ξ
(1)T
tp+1,i0

n∑
j=1

tp∑
k=0

a(tp+1−k)
i0j

ϕ
(1)
k,jwk+1,j

− 2̃ξ
(2)T
tp+1,i0

n∑
j=1

tp∑
k=0

a(tp+1−k)
i0j

ϕ
(2)
k,jwk+1,j

+ ξ̃
(1)T
tp+1,i0Ψ

(11)
tp+1,i0

ξ̃
(1)
tp+1,i0 + ξ̃

(2)T
tp+1,i0Ψ

(21)
tp+1,i0

ξ̃
(1)
tp+1,i0

+̃ξ
(1)T
tp+1,i0Ψ

(12)
tp+1,i0

ξ̃
(2)
tp+1,i0 + ξ̃

(2)T
tp+1,i0Ψ

(22)
tp+1,i0

ξ̃
(2)
tp+1,i0

+ αtp+1,i0

d∑
l=1

1

θ̂tp+1,i0 (l)
|̃ξtp+1,i0 (l) + θ(l)|

+ αtp+1,i0

m∑
l=d+1

1

|θ̂tp+1,i0 (l)|
|̃ξtp+1,i0 (l)|. (26)

By the definition of ξ̄tp+1,i0 , we have

J̄tp+1,i0 (θ + ξ̄tp+1,i0 ) −

n∑
j=1

tp∑
k=0

a(tp+1−k)
i0j

w2
k+1,j

= −2̃ξ
(1)T
tp+1,i0

n∑
j=1

tp∑
k=0

a(tp+1−k)
i0j

ϕ
(1)
k,jwk+1,j

+ ξ̃
(1)T
tp+1,i0Ψ

(11)
tp+1,i0

ξ̃
(1)
tp+1,i0

+ αtp+1,i0

d∑
l=1

1

|θ̂tp+1,i0 (l)|
|ξ̄tp+1,i0 (l) + θ(l)|. (27)

y (26) and (27), we have

J̄tp+1,i0 (θ + ξ̃tp+1,i0 ) − J̄tp+1,i0 (θ + ξ̄tp+1,i0 )

= − 2̃ξ
(2)T
tp+1,i0

n∑
j=1

tp∑
k=0

a(tp+1−k)
i0j

ϕ
(2)
k,jwk+1,j

+ ξ̃
(2)T

Ψ (22)
ξ̃
(2)

+ ξ̃
(1)T

Ψ (12)
ξ̃
(2)
tp+1,i0 tp+1,i0 tp+1,i0 tp+1,i0 tp+1,i0 tp+1,i0

6

+̃ξ
(2)T
tp+1,i0Ψ

(21)
tp+1,i0

ξ̃
(1)
tp+1,i0 +

m∑
l=d+1

αtp+1,i0

|θ̂tp+1,i0 (l)|
|̃ξtp+1,i0 (l)|

≜ − 2I (1)tp+1,i0
+ I (2)tp+1,i0

+ I (3)tp+1,i0
+ I (4)tp+1,i0

+ I (5)tp+1,i0
. (28)

In the following, we estimate I (1)tp+1,i0
, I (2)tp+1,i0

, I (3)tp+1,i0
, I (4)tp+1,i0

, I (5)tp+1,i0
separately. By (6), we have P−1

t+1,i = Ψ t+1,i +
∑n

j=1 a
(t+1)
ij P−1

0,j ≜(
Q (11)

t+1,i Q (12)
t+1,i

Q (21)
t+1,i Q (22)

t+1,i

)
. By Lemma 1, we have

|I (1)tp+1,i0
| =

⏐⏐⏐⏐̃ξ(2)Ttp+1,i0 (Q
(22)
tp+1,i0

)
1
2 (Q (22)

tp+1,i0
)−

1
2

n∑
j=1

tp∑
k=0

a(tp+1−k)
i0j

ϕ
(2)
k,jwk+1,j

⏐⏐⏐⏐
= ∥(Q (22)

tp+1,i0
)∥

1
2 ∥̃ξ

(2)
tp+1,i0∥O

(√
log r (2)tp

)
, (29)

here r (2)t ≜
∑n

i=1
∑t

k=0 ∥ϕ
(2)
k,i∥

2. Note that λmax(Q
(22)
tp+1,i0

) ≤

λmax(P−1
tp+1,i0

) and λmin(Q
(22)
tp+1,i0

) ≥ λmin(P−1
tp+1,i0

). Hence, we have
(2)
tp ≤ rtp . We obtain that for large p and some positive constant
2

− 2I (1)tp+1,i0
+ I (2)tp+1,i0

≥ λmin(Ψ
(22)
tp+1,i0

)∥̃ξ
(2)
tp+1,i0∥

2

c2∥(Q
(22)
tp+1,i0

)∥
1
2 ∥̃ξ

(2)
tp+1,i0∥

√
log r (2)tp

≥
1
2
λmin(Q

(22)
tp+1,i0

)∥̃ξ
(2)
tp+1,i0∥

2

− c2∥(Q
(22)
tp+1,i0

)∥
1
2 ∥̃ξ

(2)
tp+1,i0∥

√
log r (2)tp

≥
1
2
λmin(P−1

tp+1,i0
)∥̃ξ

(2)
tp+1,i0∥

2

− c2
√

λmax(P−1
tp+1,i0

)∥̃ξ
(2)
tp+1,i0∥

√
log rtp . (30)

y Lemma 1, and based on the equivalence of norms in a finite
imensional space, we have

I (3)tp+1,i0
| ≤ c3∥̃ξ

(1)
tp+1,i0∥∥̃ξ

(2)
tp+1,i0∥∥Ψ

(12)
tp+1,i0

∥F

≤ c4∥̃ξ
(1)
tp+1,i0∥∥̃ξ

(2)
tp+1,i0∥∥Ψ tp+1,i0∥

≤ c4∥̃ξ
(1)
tp+1,i0∥∥̃ξ

(2)
tp+1,i0∥λmax(P−1

tp+1,i0
)

= O
(

λmax(P−1
tp+1,i0

)
[

αtp+1,i0

λmin(P−1
tp+1,i0

)

+

√
log(rtp )

λmin(P−1
tp+1,i0

)

]
∥̃ξ

(2)
tp+1,i0∥

)
, (31)

where c3 and c4 are two positive constants. So does I (4)tp+1,i0
.

Then by the definition of θ̂tp+1,i0 (l) in (15), and the condition
log rt = O(log rt−DG+1), we have for l = d + 1, . . . ,m, Ltp+1,i0 ≤

|θ̂tp+1,i0 (l)| ≤ c5Ltp+1,i0 , where c5 > 0 is a positive constant, and

Ltp+1,i0 =

√
log(λmax(P−1

tp+1,i0
))

λmin(P
−1
tp+1,i0

)
. Hence we have

I (5)tp+1,i0
≥ αtp+1,i0

1
c5Ltp+1,i0

m∑
l=d+1

|̃ξtp+1,i0 (l)|

≥ αtp+1,i0
1

c5Ltp+1,i0
∥̃ξ

(2)
tp+1,i0∥. (32)

Thus, by (28)–(32), for some c6 > 0, we obtain

J̄ (θ + ξ̃ ) − J̄ (θ + ξ̄ )
tp+1,i0 tp+1,i0 tp+1,i0 tp+1,i0
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6

w
t
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e
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r

λmin(P−1
tp+1,i0

)∥̃ξ
(2)
tp+1,i0∥ ·⎛⎝ ∥̃ξ

(2)
tp+1,i0∥

2
− c2

√λmax(P−1
tp+1,i0

)

λmin(P−1
tp+1,i0

)

√
log rtp

λmin(P−1
tp+1,i0

)

−

c6λmax(P−1
tp+1,i0

)

λmin(P−1
tp+1,i0

)

[
αtp+1,i0

λmin(P−1
tp+1,i0

)
+√

log(rtp )

λmin(P−1
tp+1,i0

)

]
+

αtp+1,i0

c5λmin(P−1
tp+1,i0

)Ltp+1,i0

)
. (33)

y (13), (16) and Assumption 3, we have

λmax(P−1
tp+1,i0

)

λmin(P−1
tp+1,i0

)

√
log rtp

λmin(P−1
tp+1,i0

)

≤

λmax(P−1
tp+1,i0

)

λmin(P−1
tp+1,i0

)

√
log rtp
λ
n,tp
min

= o
( αtp+1,i0

λmin(P−1
tp+1,i0

)Ltp+1,i0

)
. (34)

By (13) and Assumption 3, we have

λmax(P−1
tp+1,i0

)αtp+1,i0

λ2
min(P

−1
tp+1,i0

)

/ αtp+1,i0

λmin(P−1
tp+1,i0

)Ltp+1,i0

=Ltp+1,i0

λmax(P−1
tp+1,i0

)

λmin(P−1
tp+1,i0

)
= O

( rtp
λ
n,tp
min

√
log(rtp )

λ
n,tp
min

)
= o(1). (35)

rom (33)–(35), we have

J̄tp+1,i0 (θ + ξ̃tp+1,i0 ) − J̄tp+1,i0 (θ + ξ̄tp+1,i0 )

≥ λmin(P−1
tp+1,i0

)∥̃ξ
(2)
tp+1,i0∥ ·⎛⎝ ∥̃ξ

(2)
tp+1,i0∥

2
+

[
1
c5

+ o(1)]αtp+1,i0

λmin(P−1
tp+1,i0

)Ltp+1,i0

⎞⎠ . (36)

ote that ξ̃tp+1,i0 (sl) ̸= 0 for some sl ∈ {d + 1, . . . ,m}. Hence

ξ̃
(2)
tp+1,i0∥ > 0. Then by (36), we have Jtp+1,i0 (θ + ξ̃tp+1,i0 ) −

J̄tp+1,i0 (θ + ξ̄tp+1,i0 ) > 0, which contradicts (25). This implies that

∥̃ξ
(2)
t+1,i∥ = 0 for all large t and all i ∈ {1, . . . , n}, which completes

the proof. □

5. A simulation example

In this section, we provide an example to illustrate the perfor-
mance of the distributed sparse identification algorithm (i.e., Al-
gorithm 1) proposed in this paper.

Consider a network composed of n = 18 sensors whose dy-
namics obey the model (1) with the dimension m = 16. The noise
sequence {wt,i, t ≥ 1, i = 1, . . . , n} in (1) is independent and
identically distributed with wt,i ∼ N (0, 1) (Gaussian distribution
with zero mean and variance 1). The regression vectors {ϕt,i ∈

R16, i = 1, . . . , 18, t ≥ 1} are generated according to the
following expression.

ϕt,i =

[
0, . . . , 0, 1.2t

+

t−1∑
k=0

sin(ik)εt−k,i  
jth

, 0, . . . , 0
]T

,

here j = mod(i,m) and the noise sequences {εt,i, i = 1, . . . , n,
≥ 1} are independent and uniformly distributed in (−1, 1). All

sensors will estimate an unknown parameter

θ = [0, 0, 0.6, 1.5, 0, 0, 2, 0, 0, 0, 0.9, −1.2, 0, 1.8, 0, −0.6]T .
7

Fig. 1. The estimation errors of Algorithm 1, classical LASSO and non-
cooperative sparse identification algorithm.

The initial estimate is taken as ξ0,i = [1, . . . , 1]T for i =

1, 2, . . . , n. We use the Metropolis rule (Xiao et al., 2005) to
construct the weights of the network.

It can be verified that for each sensor i (i = 1 · · · , 18),
the regression signals ϕt,i have no adequate excitation to esti-
mate the unknown parameter, but they can cooperate to satisfy
Assumption 3.
(1) We estimate the unknown parameter θ by using the non-
cooperative sparse identification algorithm (i.e., the adjacency
matrix is the unit matrix), the classical LASSO (Eq. (9)) and the
distributed sparse identification algorithm (Algorithm 1) pro-
posed in this paper respectively. We adopt the Matlab CVX tools
to solve the convex optimization problem (17), and take the
regularization coefficient as αt,i = (λmin(P−1

t+1,i))
0.75. The average

stimation error generated by these three algorithms is shown in
ig. 1. We see that the estimation error generated by distributed
parse identification algorithm converges to zero as t increases,
hile the estimation error of the non-cooperative sparse identi-

ication algorithm does not. Therefore, the estimation task can be
ulfilled through exchanging information between sensors even
hough any individual sensor cannot. Moreover, from Fig. 1, we
an see that Algorithm 1 has better estimation performance than
he classical LASSO.
2) We estimate the unknown parameter θ by using the classical
istributed LS algorithm studied by Xie et al. (2021) and Algo-
ithm 1 proposed in this paper under the same network topology.
able 1 shows the estimates for θ(1) by these two algorithms at
ime instants t = 50 (similar for other zero elements in θ). From
able 1, we can see that, compared with the distributed LS algo-
ithm in Xie et al. (2021), Algorithm 1 can generate sparser and
ore accurate estimates for the unknown parameters and thus
ive us valuable information in inferring the zero and nonzero
lements in the unknown parameters.

. Concluding remarks

In this paper, we introduced a local information criterion
hich is formulated as a linear combination of the local estima-
ion error with L1-regularization term. By minimizing this crite-
ion, we proposed a distributed sparse identification algorithm to
stimate an unknown parameter vector of a stochastic system.
nder a cooperative non-persistent excitation condition, the set
f zero elements in the unknown parameter vector can be cor-
ectly identified with a finite number of observations by properly
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G
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Table 1
Estimates for θ(1) by the distributed LS algorithm in Xie et al. (2021) and Algorithm 1 at t = 50.

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6

By distributed LS −3.82 × 10−4
−3.84 × 10−4

−2.53 × 10−4
−1.29 × 10−4

−3.09 × 10−4
−1.92 × 10−4

By Algorithm 1 3.18 × 10−13 3.34 × 10−14 2.31 × 10−14 3.50 × 10−14 2.99 × 10−14 3.38 × 10−13

Sensor 7 Sensor 8 Sensor 9 Sensor 10 Sensor 11 Sensor 12

By distributed LS −3.17 × 10−4
−2.87 × 10−4

−3.52 × 10−4
−2.72 × 10−4

−1.69 × 10−4
−2.34 × 10−4

By Algorithm 1 3.00 × 10−13 1.14 × 10−13 1.09 × 10−12 3.30 × 10−13 2.29 × 10−13 2.17 × 10−13

Sensor 13 Sensor 14 Sensor 15 Sensor 16 Sensor 17 Sensor 18

By distributed LS −3.31 × 10−4
−3.86 × 10−4

−3.12 × 10−4
−4.52 × 10−5

−4.24 × 10−5
−3.68 × 10−4

By Algorithm 1 1.75 × 10−13 3.79 × 10−13 7.92 × 10−14 2.66 × 10−13 4.01 × 10−13 1.68 × 10−13
S

T

X

X

X

X

Z

Z

Z

Z

choosing the weighting coefficient. We remark that our theoreti-
cal results are established without using such stringent conditions
as independency of the regression vectors, which makes it pos-
sible to combine the distributed adaptive estimation with the
distributed control. For future research, it will be interesting to
consider the combination of the distributed sparse identification
algorithm with the distributed control, and design a recursive
distributed sparse adaptive algorithm.
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